Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}3x-2\left|y\right|=9\\2x+3\left|y\right|=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left|x-2\right|+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\left|2x-y\right|-2\left|y-x\right|=1\\3\left|2x-y\right|+\left|x+y\right|=10\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\left(\dfrac{x}{y}\right)^2+\left(\dfrac{x}{y}\right)^3=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\)
Giải hệ phương trình
a, \(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x+y+xy=3\\x^2+y^2=2\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+y^2+xy=4\\x-y-3xy=16\end{matrix}\right.\)
GIÚP MÌNH NHÉ
giải hệ pt bằng phương pháp thế:
1) \(\left\{{}\begin{matrix}x+y=3\\x+2y=5\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x-y=3\\y=2x+1\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}2x+3y=4\\y-x=-2\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}x=y+2\\x=3y+8\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}2x-y=1\\3x-4y=2\end{matrix}\right.\)
giúp mk vs ạ mai mk hc rồi
giả các hệ phương trình sau :
a) \(\left\{{}\begin{matrix}\dfrac{-3}{x-y+1}+\dfrac{1}{x +y-2}=12\\\dfrac{2}{x-y+1}-\dfrac{3}{x+y-2}=-1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2+2\left(y^2+2y\right)=10\\3x^2-\left(y^2+2y\right)=9\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{x-1}}-\dfrac{5}{\sqrt{y+2}}=\dfrac{9}{2}\\\dfrac{3}{\sqrt{x-1}}+\dfrac{2}{\sqrt{y+2}}=4\end{matrix}\right.\)
giải hệ phương trình :
\(\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\x+\left(\sqrt{2}+1\right)y=1\end{matrix}\right.\)
Giải các hệ phương trình sau
a)\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\2x+3y=xy+5\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\left(x-y\right)^2+3\left(x-y\right)=4\\2x+3y=12\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\frac{x}{y}+\frac{y}{x}=\frac{13}{6}\\x+y=5\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}x+y+xy=7\\x+y^2+xy=13\end{matrix}\right.\)
giải hệ phương trình sau:
\(\left\{{}\begin{matrix}y\left(x+3\right)=1\\y+\dfrac{2}{y}=x+1\end{matrix}\right.\)
Giải các hệ phương trình
a) \(\left\{{}\begin{matrix}x+y+xy=3\\x^2y+xy^2=2\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x^2+y^2=2\left(xy+2\right)\\x+y=6\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-2x=y\\y^2-2y=x\end{matrix}\right.\) d) \(\left\{{}\begin{matrix}2x^2-xy+3y^2=13\\x^2+4xy-2t^2=-6\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}2x^2-y^2=1\\xy+x^2=2\end{matrix}\right.\)