Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen2005

giải hệ phương trình sau:

\(\left\{{}\begin{matrix}y\left(x+3\right)=1\\y+\dfrac{2}{y}=x+1\end{matrix}\right.\)

 

Trương Huy Hoàng
10 tháng 2 2021 lúc 21:34

\(\left\{{}\begin{matrix}y\left(x+3\right)=1\\y+\dfrac{2}{y}=x+1\end{matrix}\right.\) (y \(\ne\) 0)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=\dfrac{1}{x+3}\\\dfrac{1}{x+3}+2\left(x+3\right)=x+1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=\dfrac{1}{x+3}\\1+2\left(x+3\right)^2=\left(x+1\right)\left(x+3\right)\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=\dfrac{1}{x+3}\\1+2\left(x^2+6x+9\right)=x^2+4x+3\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=\dfrac{1}{x+3}\\1+2x^2+12x+18-x^2-4x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=\dfrac{1}{x+3}\\x^2+8x+16=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=\dfrac{1}{x+3}\\\left(x+4\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=\dfrac{1}{x+3}\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-4\\y=\dfrac{1}{-4+3}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-4\\y=-1\end{matrix}\right.\) (TM)

Vậy ...

Chúc bn học tốt!


Các câu hỏi tương tự
Oriana.su
Xem chi tiết
Xích U Lan
Xem chi tiết
Linh Nguyen
Xem chi tiết
nguyen2005
Xem chi tiết
illumina
Xem chi tiết
Ánh Tuyết
Xem chi tiết
illumina
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Oriana.su
Xem chi tiết