từ pt trên tính x theo y hoặc y theo x r thay vào pt dưới
từ pt trên tính x theo y hoặc y theo x r thay vào pt dưới
Giải hệ phương trình :
\(\begin{cases}3x^2+4x+2\ln\left(3x+1\right)=2y\\3y^2+4y+2\ln\left(3y+1\right)=2x\end{cases}\)
tìm m để hệ phương trình \(\left\{{}\begin{matrix}x+y+xy=m+1\\x^2y+y^2x=3m-5\end{matrix}\right.\) có 1 no duy nhất
giải hệ phương trình đối xứng loại 2 sau:
\(\left\{{}\begin{matrix}x^3+y^2=2y\\y^3+x^2=2x\end{matrix}\right.\)
Giải các hệ sau
\(\left\{{}\begin{matrix}2x-y=3\\x^2-3xy+y^2+2x+3y-6=0\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x^2y^2=2x^2+y\\xy^2+2x^2=1\end{matrix}\right.\)
Giải hệ phương trình :
\(\begin{cases}x^2+\sqrt{x}=2y\\y^2+\sqrt{y}=2x\end{cases}\) (*)
Giải hệ phương trình :
\(\begin{cases}\left(4x+2\right)^2=2y+15\left(1\right)\\\left(4y+2\right)^2=2x+15\left(2\right)\end{cases}\)
Giải hệ phương trình
\(\begin{cases}x^2+3x+ln\left(2x+1\right)=y\left(i\right)\\y^2+3y+ln\left(2n+1\right)=x\left(ii\right)\end{cases}\)
giải hệ
\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)