a/
\(\Leftrightarrow4cos^2\left(6x-2\right)+8\left(1+cos\left(6x-2\right)\right)-13=0\)
Đặt \(cos\left(6x-2\right)=a\Rightarrow\left|a\right|\le1\)
Pt trở thành:
\(4a^2+8\left(1+a\right)-13=0\)
\(\Leftrightarrow4a^2+8a-5=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{2}\\a=-\frac{5}{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow cos\left(6x-2\right)=\frac{1}{2}\)
\(\Rightarrow6x-2=\pm\frac{\pi}{3}+k2\pi\)
\(\Rightarrow x=\frac{1}{3}\pm\frac{\pi}{18}+\frac{k\pi}{3}\)
b/
\(\Leftrightarrow2cos^2\left(x+75^0\right)-1+3sin\left(15^0-x\right)-1=0\)
\(\Leftrightarrow2cos^2\left(x+75^0\right)+3cos\left(90^0-15^0+x\right)-2=0\)
\(\Leftrightarrow2cos^2\left(x+75^0\right)+3cos\left(x+75^0\right)-2=0\)
\(\Rightarrow\left[{}\begin{matrix}cos\left(x+75^0\right)=\frac{1}{2}\\cos\left(x+75^0\right)=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+75^0=60^0+k360^0\\x+75^0=-60^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-15^0+k360^0\\x=-135^0+k360^0\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x\right)+\left(\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx\right)=1\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)=1\)
\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)
\(\Leftrightarrow cos2\left(x-\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)
\(\Leftrightarrow1-2sin^2\left(x-\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)\left(1-2sin\left(x-\frac{\pi}{6}\right)\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{6}\right)=0\\sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=k\pi\\x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)
d/
Gần như y hệt câu c
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=2\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)=2\)
Do \(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)\le1\\sin\left(x+\frac{\pi}{6}\right)\le1\end{matrix}\right.\) nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)=1\\sin\left(x+\frac{\pi}{6}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{3}+k2\pi\)