Bài 2: Phương trình lượng giác cơ bản

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

giải các pt

a) \(4cos^2\left(6x-2\right)+16cos^2\left(1-3x\right)=13\)

b) \(cos\left(2x+150^o\right)+3sin\left(15^o-x\right)-1=0\)

c) \(\sqrt{3}sin2x+\sqrt{3}sinx+cos2x-cosx=2\)

d) \(cos2x-\sqrt{3}sin2x-\sqrt{3}sinx+4=cosx\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:26

a/

\(\Leftrightarrow4cos^2\left(6x-2\right)+8\left(1+cos\left(6x-2\right)\right)-13=0\)

Đặt \(cos\left(6x-2\right)=a\Rightarrow\left|a\right|\le1\)

Pt trở thành:

\(4a^2+8\left(1+a\right)-13=0\)

\(\Leftrightarrow4a^2+8a-5=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{2}\\a=-\frac{5}{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow cos\left(6x-2\right)=\frac{1}{2}\)

\(\Rightarrow6x-2=\pm\frac{\pi}{3}+k2\pi\)

\(\Rightarrow x=\frac{1}{3}\pm\frac{\pi}{18}+\frac{k\pi}{3}\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:29

b/

\(\Leftrightarrow2cos^2\left(x+75^0\right)-1+3sin\left(15^0-x\right)-1=0\)

\(\Leftrightarrow2cos^2\left(x+75^0\right)+3cos\left(90^0-15^0+x\right)-2=0\)

\(\Leftrightarrow2cos^2\left(x+75^0\right)+3cos\left(x+75^0\right)-2=0\)

\(\Rightarrow\left[{}\begin{matrix}cos\left(x+75^0\right)=\frac{1}{2}\\cos\left(x+75^0\right)=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+75^0=60^0+k360^0\\x+75^0=-60^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-15^0+k360^0\\x=-135^0+k360^0\end{matrix}\right.\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:38

c/

\(\Leftrightarrow\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x\right)+\left(\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx\right)=1\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)=1\)

\(\Leftrightarrow cos\left(2x-\frac{\pi}{3}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)

\(\Leftrightarrow cos2\left(x-\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)

\(\Leftrightarrow1-2sin^2\left(x-\frac{\pi}{6}\right)+sin\left(x-\frac{\pi}{6}\right)-1=0\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{6}\right)\left(1-2sin\left(x-\frac{\pi}{6}\right)\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{6}\right)=0\\sin\left(x-\frac{\pi}{6}\right)=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{\pi}{6}=k\pi\\x-\frac{\pi}{6}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{6}=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
24 tháng 7 2020 lúc 18:43

d/

Gần như y hệt câu c

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=2\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+sin\left(x+\frac{\pi}{6}\right)=2\)

Do \(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)\le1\\sin\left(x+\frac{\pi}{6}\right)\le1\end{matrix}\right.\) nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sin\left(2x-\frac{\pi}{6}\right)=1\\sin\left(x+\frac{\pi}{6}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{3}+k2\pi\)


Các câu hỏi tương tự
Linh Bảo
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
tran duc huy
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Mai Anh
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Kiều Anh
Xem chi tiết