a) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Rightarrow\left(x^2+4x+8\right)^2+2.\dfrac{3}{2}x\left(x^2+4x+8\right)+\dfrac{9}{4}x^2-\dfrac{1}{4}x^2=0\)
\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\left(\dfrac{1}{2}x\right)^2=0\)
\(\Rightarrow\left(x^2+4x+8+\dfrac{3}{2}x-\dfrac{1}{2}x\right)\left(x^2+4x+8+\dfrac{3}{2}x+\dfrac{1}{2}x\right)=0\)
\(\Rightarrow\left(x^2+4x+8+x\right)\left(x^2+4x+8+2x\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+6x+8\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x^2+2x+4x+8\right)=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left[x\left(x+2\right)+4\left(x+2\right)\right]=0\)
\(\Rightarrow\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)=0\)
Vì x2 ≥ 0 với mọi x
⇒ x2 + 5x + 8 ≥ 0 với mọi x
\(\Rightarrow\left(x+2\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)
b) \(\dfrac{x-5}{2017}+\dfrac{x-2}{2020}=\dfrac{x-6}{2016}+\dfrac{x-68}{1954}\)
Trừ 2 vào mỗi vế ta có:
\(\Rightarrow\dfrac{x-5}{2017}-1+\dfrac{x-2}{2020}-1=\dfrac{x-6}{2016}-1+\dfrac{x-68}{1954}-1\)
\(\Rightarrow\dfrac{x-2022}{2017}+\dfrac{x-2022}{2020}-\dfrac{x-2022}{2016}-\dfrac{x-2022}{1954}=0\)
\(\Rightarrow\left(x-2022\right)\left(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\right)=0\)
Ta thấy \(\dfrac{1}{2017}+\dfrac{1}{2020}-\dfrac{1}{2016}-\dfrac{1}{1954}\ne0\)
\(\Rightarrow x-2022=0\Rightarrow x=2022\)
Chúc bạn học tốt!