a)
\(\dfrac{5x^2+16}{x^2-16}=\dfrac{2x-1}{x+4}-\dfrac{3x-1}{4-x}\) (\(x\ne\pm2\))
\(\Rightarrow\dfrac{5x^2+16}{\left(x-4\right)\left(x+4\right)}-\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}-\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=0\)
\(\Rightarrow\dfrac{5x^2+16-\left(2x^2-8x-x+4\right)-\left(3x^2+12x-x-4\right)}{\left(x-4\right)\left(x+4\right)}=0\)
\(\Rightarrow\dfrac{10x+16}{x^2-16}=0\)
=> 10x + 16 =0
=> 10x = -16
=> x = \(-\dfrac{8}{5}\)