\(\left\{{}\begin{matrix}2x+y=3\\x^2+y=5\end{matrix}\right.\) \(\Leftrightarrow x^2-2x=2\Leftrightarrow x^2-2x-2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\Rightarrow y=3-2x=1-2\sqrt{3}\\x=1-\sqrt{3}\Rightarrow y=1+2\sqrt{3}\end{matrix}\right.\)
Câu 2: \(x\ge-1\)
\(\left\{{}\begin{matrix}2\left(x+y\right)+\sqrt{x+1}=4\\2\left(x+y\right)-6\sqrt{x+1}=-10\end{matrix}\right.\) \(\Rightarrow7\sqrt{x+1}=14\)
\(\Rightarrow\sqrt{x+1}=2\Rightarrow x=3\)
\(\Rightarrow y=-5+3\sqrt{x+1}-x=2\)