\(\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=1\Rightarrow\left(4+\sqrt{15}\right)^x\left(4-\sqrt{15}\right)^x=1\)
Đặt \(t=\left(4+\sqrt{15}\right)^x,t>0\Rightarrow\left(4-\sqrt{15}\right)^x=\frac{1}{t}\)
Bất phương trình đã cho trở thành :
\(t+\frac{1}{t}>8\Rightarrow t^2-8t+1>0\Leftrightarrow\left[\begin{array}{nghiempt}t>4+\sqrt{15}\\t< 4-\sqrt{15}\end{array}\right.\)
* \(t>4+\sqrt{15}\Rightarrow\left(4+\sqrt{15}\right)^x>4+\sqrt{15}\Rightarrow x>1\)
* \(t< 4-\sqrt{15}\Rightarrow\left(4+\sqrt{15}\right)^x< 4-\sqrt{15}\Rightarrow\left(4+\sqrt{15}\right)^x< \left(4+\sqrt{15}\right)^{-1}\Rightarrow x< -1\)
Vậy tập nghiệm của bất phương trình là \(S=\left(-\infty;-1\right)\cup\left(1;+\infty\right)\)