giải bất phương trình :
a, x\(^2\) -4x-5<0
b, 2x\(^2\)-6x+5 >0
giải bất phương trình \(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right)\left(x^6-x^3+x^2-x+1\right)\ge0\)
Giải phương trình:
\(x^2+4x+5=2\sqrt{2x+3}\)
Giải phương trình:
1, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
2, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
3, \(2x^3-x^2-3x+1=\sqrt{x^5+x^4+1}\)
4, \(5\sqrt{x^4+8x}=4x^2+8\)
5, \(\left(x^2+4\right)\sqrt{2x+4}=3x^2+6x-4\)
6, \(\left(x^2-6x+11\right)\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
Giải phương trình bằng phương pháp bất đẳng thức
1, \(\sqrt{x^2-6x+11}+\sqrt{x^2-6x+13}+\sqrt[4]{x^2-4x+5}=3+\sqrt{2}\)
2, \(\sqrt{x-10}+\sqrt{30-x}=x^2-40x+400+2\sqrt{10}\)
3, \(x^2-3x+3,5=\sqrt{\left(x^2-2x+2\right)\left(x^2-4x+5\right)}\)
4, \(\sqrt{5x^3+3x^2+3x-2}=\dfrac{x^2}{2}+3x-\dfrac{1}{2}\)
5, \(2\sqrt{7x^3-11x^2+25x-12}=x^2+6x-1\)
Giải phương trình: \(x^2+6x+1-\left(2x+1\right).\sqrt{x^2+2x+3}=0\)
Giải phương trình: \(x^2+6x+1-\left(2x+1\right)\sqrt{x^2+2x+3}=0\)
Giải phương trình:
*a) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
b) \(4x^4-5x^2+1=0\)
c) \(2x^4-7x^2+5=0\)
*d) \(x^4+7x^3-6x^2+7x+1=0\)
1, Giải phương trình :\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
2, Giải bất phương trình :\(2x^3-5x^2+5x-3< 0\)