1) Chứng minh rằng: \(x^3-7y=51\) không có nghiệm nguyên
2) Tìm nghiệm nguyên của phương trình \(x^2-5y^2=27\)
3) Tìm nghiệm nguyên dương
a) \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
b)\(\dfrac{1}{x}+\dfrac{1}{y}=z\)
1.Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}2x-3y=3\\-4y=3x-13\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=3\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{5}{y}=1\\\dfrac{2}{x}+\dfrac{1}{y}=3\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\sqrt{x+1}-3\sqrt{y-1}=-4\\2\sqrt{x+1}-\sqrt{y-1}=2\end{matrix}\right.\)
2.Cho hệ phương trình:\(\left\{{}\begin{matrix}mx-y=2\\4x-my=m+6\end{matrix}\right.\)
a)giải hệ với m=-1
b) Tìm m để hệ phương trình có nghiệm duy nhất
c) tìm m để hệ phương trình có vô số nghiệm
d) tìm m để hệ phương trình vô nghiệm
giúp mk vs ạ!! mk đang cần gấp ạ!! Tks
khoanh vào chữ cái đặt trước câu trả lời đúng:
1. Phương trình nào sau đây không là phương trình bậc nhất 2 ẩn?
a, 2x+3y=-1 b, 0x+5y=2 c, -3x+0y=0 d, 2x+\(\sqrt{y}\)=5
2. \(\left\{{}\begin{matrix}x\in R\\y=-\dfrac{1}{2}x+1\end{matrix}\right.\)là nghiệm của phương trình:
a, 2x+y=1 b, x+2y=-21 c, x+2y=2 d, 2x+y=2
3. Cặp số nào sau đây là nghiệm của hpt \(\left\{{}\begin{matrix}2x+3y=-8\\3x-2y=1\end{matrix}\right.\)?
a, (-2;-1) b, (-1;-2) c, (2,-1) d, (1;-2)
4. Cho hpt \(\left\{{}\begin{matrix}x+ay=1\\bx-y=-a\end{matrix}\right.\). Tìm giá trị của a,b để hpt có nghiệm là (2;1)
a, a=1;b=-1 b, a=-1;b=-1 c, a=1;b=1 d, a=-1; b=1
5. Tọa độ giao điểm của 2 đường thẳng y=x-1 và y= -x+2 là:
a, \(\left(\dfrac{3}{2};\dfrac{1}{2}\right)\) b, \(\left(\dfrac{3}{2};-\dfrac{1}{2}\right)\) c,\(\left(-\dfrac{3}{2};\dfrac{1}{2}\right)\) d, \(\left(\dfrac{3}{2};0\right)\)
6. Xác định m để hpt \(\left\{{}\begin{matrix}4x+8y=-9\\\left(m+1\right)x+my=3\end{matrix}\right.\) vô nghiệm.
a, m=\(\dfrac{-8}{3}\) b, m≠\(\dfrac{-8}{3}\) c, m=-2 d, m≠-2
7. Nối mỗi hpt với nghiệm của nó
hệ phương trình | nối | nghiệm |
a,\(\left\{{}\begin{matrix}x-5y=-6\\5x-7y=-12\end{matrix}\right.\) | 1, (-2;-3) | |
b,\(\left\{{}\begin{matrix}3x+4y=-18\\x-7y=19\end{matrix}\right.\) | 2, (-2;2) | |
c,\(\left\{{}\begin{matrix}x-\dfrac{1}{3}y=-3\\\dfrac{x}{2}+\dfrac{y}{4}=1\end{matrix}\right.\) | 3, (-1;1) | |
d,\(\left\{{}\begin{matrix}2x-5y=-14\\3x-4y=-14\end{matrix}\right.\) | 4, (-1;6) | |
5, (-2;-2) |
GIÚP VỚI HELP ME
Cho a,b,c >0 và phương trình: \(x^2-x-\dfrac{a}{b+c}-\dfrac{b}{a+c}-\dfrac{c}{a+b}+\dfrac{5}{2}=0\).CMR phương trình luôn có nghiệm. Tìm điều kiện của a,b,c để phương trình có nghiệm kép.
\(x^3+ax^2+bx-1=0\)
a) tìm các số hữu tỉ a,b để phương trình có nghiệm \(x=2-\sqrt{3}\)
b) với giá trị a,b tìm được trên gọi x1,x2,x3 là 3 nghiệm của phương trình tính S=\(\dfrac{1}{x1^5}+\dfrac{1}{x2^5}+\dfrac{1}{x3^5}\)
1, hàm số y=(-3m+2) x2 đồng biến khi x<0 và nghịch biến khi x>0 với
a,\(m\ge\dfrac{2}{3}\) b, \(m< \dfrac{2}{3}\) c,\(m=\dfrac{2}{3}\) d, \(m>\dfrac{2}{3}\)
2, cho công thức nghiệm tổng quát của pt x+2y=0
a,\(\left\{{}\begin{matrix}x\in R\\y=\dfrac{x}{2}\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x\in R\\y=\dfrac{-x}{2}\end{matrix}\right.\) c, \(\left\{{}\begin{matrix}x\in R\\x=\dfrac{-y}{2}\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}x\in R\\y=-2x\end{matrix}\right.\)
3, tổng có nghiệm của pt 5x4-9x2+4 =0 bằng
a,\(\dfrac{4}{5}\) b, 9 c, 0 d, \(\dfrac{9}{5}\)
4, 2 hệ pt \(\left\{{}\begin{matrix}kx+3y=2\\-x+y=1\end{matrix}\right.\) và \(\left\{{}\begin{matrix}x+y=3\\x-y=-1\end{matrix}\right.\) là tương đương khi k bằng
a, 3 b, -4 c, \(\dfrac{-1}{2}\) d, -3
Cho a.b,c là số hữu tỉ t/m abc=1 và \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\).
C/m ít nhẩ một trong 3 số a,b,c là bình phương của một số hữu tỉ.
1)Cho 3 số thực dương,chứng minh bất đẳng thức:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\)
2)Giải phương trình:
\(\dfrac{2x-1}{x^2}+\dfrac{y-1}{y^2}+\dfrac{6z-9}{z^2}=\dfrac{9}{4}\)
1. cho phương trình :x2+5x+m-2=0( m là tham số)
a, giải phương trình khi m=-12
b, tìm m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{x}{x_1-1}+\dfrac{1}{x_2-1}=2\)