\(P=\left(x-1\right)\left(2x+3\right)=2x^2+2x-3\)
\(=2\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{7}{2}\)
\(=2\left(x+\dfrac{1}{2}\right)^2-\dfrac{7}{2}\ge-\dfrac{7}{2}\forall x\)
Vậy Min P = \(-\dfrac{7}{2}\) khi \(x+\dfrac{1}{2}=0\Rightarrow x=-\dfrac{1}{2}\)