Ta có: \(\left(x-y\right)^2+\left(2x+3y-10\right)^2\ge0\)
\(\Rightarrow A=\left(x-y\right)^2+\left(2x+3y-10\right)^2-2\ge2\)
Dấu " = " xảy ra khi \(\left\{\begin{matrix}\left(x-y\right)^2=0\\\left(2x+3y-10\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x-y=0\\2x+3y-10=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=y\\2x+3y=10\end{matrix}\right.\)
\(\Rightarrow2x+3x=10\Rightarrow5x=10\Rightarrow x=2\)
\(\Rightarrow x=y=2\)
Vậy \(MIN_A=-2\) khi x = y = 2
do (x-y)2 >=0
và (2.x+3.y-10)2 >=0
nên A nhỏ nhất bằng -2
=> x-y=0