bài 1 xét tính đồn biến và nghịch biến của các hàm số
a) y= -\(\dfrac{1}{x+1}\) trên (-3;-2) và (2;3)
bài 2 xác định tính chẵn lẻ của hàm số
a) y= \(\dfrac{x^5}{\left|x\right|^3-1}\)
b) y= \(\left|x+2\right|\)-\(\left|x-2\right|\)
c) y= \(\sqrt{x+1}\)+\(\sqrt{1-x}\)
d) y=\(\dfrac{x^4+2x^2+1}{x}\)
e) y= \(x^2\)+x+1
f) y=\(\left(x+2\right)^2\)
cho hàm số y=f(x)=\(\dfrac{m\sqrt{2018+x}+\left(m^2-2\right)\sqrt{2018-x}}{\left(m^2-1\right)x}\) có đồ thị là \(\left(C_m\right)\) (m là tham số ) số giá trị của m để đồ thị \(\left(C_m\right)\) nhận trục Oy làm trục đối xứng
Xét tính chẵn lẻ của các hàm số sau
c) y = \(\sqrt{2x+9}\)
d) y = \(\left(x-1\right)^{2010}+\left(x+1\right)^{2010}\)
e) y = \(\dfrac{x^4+3x^2-1}{x^2-4}\)
f) y = \(\left|x\right|^7.x^3\)
g) y = \(\sqrt[3]{5x-3}+\sqrt[3]{5x+3}\)
h) y = \(\sqrt{3+x}-\sqrt{3-x}\)
GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP
Tìm tập xác định của hàm sô \(y=\sqrt{x+2}+\dfrac{x^3}{4\left|x\right|-3}\) và hàm số \(y=\dfrac{x}{\left|x\right|x+1}-\sqrt{3-x}\)
Cho hàm số \(y=f\left(x\right)=x^2-\left|x\right|\). Khẳng định nào sau đây đúng
1. Cho hàm số \(y=x^2-5x+4\)
a) Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-5x+4\right|-2=m\) có bốn nghiệm phân biệt.
c) Tìm giá trị lớn nhất và nhỏ nhất của hàm số \(f\left(x\right)=\left|x^2-5x+4\right|\) với x ∈ [0;5]
2. Cho hàm số \(y=-2x^2+4x\)
a) Vẽ đồ thị (P) của hàm số đã cho.
b) Tìm m để phương trình \(\left|x^2-2x\right|=m\) có ba nghiệm phân biệt.
Cho hàm số \(y=f\left(x\right)=x^2+2\left(m-1\right)x+3m-5\) (m là tham số). Tìm m để giá trị nhỏ nhất của f(x) đạt giá trị lớn nhất
Cho hàm số \(y=f\left(x\right)=x^{2023}+ax^{2019}+3\) thỏa mãn \(f\left(2022\right)=2021\). Tính f(-2022)