Giả sử a,b,c đều lẻ thì a = 2m+1 ; b = 2k+1 ; c = 2n+1
Theo đề bài vì pt có no hữu tỉ nên ∆ b^2 - 4ac là số chính phương lẻ
• Giải thích :vì no của pt sẽ là (√∆ + 2k+1) : 2(2m+1) và cx là số hữu tỉ
•Quay lại bài toán khi đó ta có : ( 2k+1)^2 - (2t+1)^2 = 4(2m+1)(2n+1)
Biến đổi ta được : 4k(k+1) - 4t(t+1) = 4(2m+1)(2n+1) : vô lí vì vế trái CHIA HẾT cho 8 mà vế phải lại KHÔNG CHIA HẾT cho 8
=> đpcm