Ta thấy nếu \(\sqrt{1-a^2}+\sqrt{1-b^2}=0\Rightarrow a^2=b^2=1\)
\(\Rightarrow a-b=0\Rightarrow a=b\) (vô lí).
Do đó ta có:
\(GT\Leftrightarrow a-b=\frac{a^2-b^2}{\sqrt{1-a^2}+\sqrt{1-b^2}}\)
\(\Leftrightarrow a+b=\sqrt{1-a^2}+\sqrt{1-b^2}\)
Mà \(a-b=\sqrt{1-b^2}-\sqrt{1-a^2}\)
Nên \(2a=a+b+a-b=2\sqrt{1-b^2}\)
\(\Rightarrow a=\sqrt{1-b^2}\Rightarrow a^2+b^2=1\).