Cho a, b, c là các số thực dương thỏa mãn \(a^2+b^2+c^2=1\). Chứng minh rằng: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{c^2+a^2}+\dfrac{1}{a^2+b^2}\le\dfrac{a^3+b^3+c^3}{2abc}+3\)
Mọi người giúp em với ạ, chiều em phải nộp rồi ạ T.T
1. Cho \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)chứng minh rằng \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=0\)
2. Giả sử \(a_1,b_1,c_1,a_2,b_2,c_2\)là các số khác 0 thỏa mãn đk : \(\dfrac{a_1}{a_2}+\dfrac{b_1}{b_2}+\dfrac{c_1}{c_2}=0\)và\(\dfrac{a_2}{a_1}+\dfrac{b_2}{b_1}+\dfrac{c_2}{c_1}=1\)
CMR : \(\dfrac{a_2^2}{a^2_1}+\dfrac{b_2^2}{b_1^2}+\dfrac{c_2^2}{c_1^2}=1\)
Mình còn không hiểu đề bài cho lắm vậy nên mong mọi người giúp mình
Thanks
Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\)
Tìm GTNN của A=\(\dfrac{a}{b^2+c^2}+\dfrac{b}{c^2+a^2}+\dfrac{c}{a^2+b^2}\)
(Sử dụng Cauchy)
Cho a,b,c là các số dương.
a) CMR: \(a^3+b^3\ge a^2b+ab^2\)
b) Giả sử abc=1. Tìm GTLN của biểu thức:
\(P=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\)
CMR
a , A=\(1^2+2^2+3^2+...+100^2\)ko là số chinh phương
b ,B=\(1^2+2^2+3^2+...+56^2\)ko là số chính phương
c , C=1+2+3+...+n là số chính phương
Bài 1 : Tính :
a) A = (2x-1).(x^2 + x - 1) - (x-5)^2
b) B = 2 (x+1).(x^2 - x + 1) + 7.(x-2)
c) CM A - B ko phụ thuộc vào giá trị của biến
Bài 2 : Phân tích đa thức thành nhân tử :
a) 2x^3 - 3x^2 - 2x + 3
b) 3x^2 - 11x + 6
Bafi 3 : Tìm giá trị nhỏ nhất :
a) P = x^2 - 2x + y^2 - 4y + 7
b) Q = x^2 - 4xy + 5y^2 + 10x - 22y + 28
cho a,b,c>0 . Cmr: \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
(sử dụng AM-GM)
1. Rút gọn:
a) ( a^2 + b^2 + c^2 )^2 - (a^2 - b^2 - c^2 )^2
b) (a+b+c)^2 - (a-b-c)^2 - 4ac
c) (a+b+c)^2 - (a+b)^2 - (a+c)^2-(b+c)^2
d) (a+b+c)^2 + (a-b+c)^2 +(a+b-c)^2 + (-a+b+c)^2