Từ pt thứ nhất: \(\Leftrightarrow x+1+\sqrt{\left(x+1\right)^2+1}=\left(-y\right)+\sqrt{\left(-y\right)^2+1}\)
Xét hàm \(f\left(t\right)=t+\sqrt{t^2+1}\Rightarrow f'\left(t\right)=1+\dfrac{t}{\sqrt{t^2+1}}=\dfrac{t+\sqrt{t^2+1}}{\sqrt{t^2+1}}\)
\(f'\left(t\right)>\dfrac{t+\sqrt{t^2}}{\sqrt{t^2+1}}=\dfrac{t+\left|t\right|}{\sqrt{t^2+1}}\ge0\Rightarrow f'\left(t\right)>0\) ; \(\forall t\)
\(\Rightarrow f\left(t\right)\) đồng biến trên R
\(\Rightarrow x+1=-y\Rightarrow y=-x-1\)
Thế xuống pt dưới:
\(x^3-\left(3x^2-2x-8\right)\sqrt{2x^2+x-1}=0\)
Bạn coi lại đề, pt vô tỉ này ko giải được