Cho: a + b + c = 0 . CMR: \((\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}).\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\) = 9
Cho a , b , c > 0 . CMR : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\)
a, Cho a,b>0 , CMR: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
b. Cho a,b,c,d > 0. CMR: \(\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\ge0\)
Cho a + b + c = 0 và \(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}=2017\) Tính \(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
Chứng minh rằng :Nếu a+b+c=0 thì
Q=\(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)=9
Cho \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
Chứng minh rằng \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\)
Cho a, b, c là 3 cạnh của một tam giác. CMR:
a, \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)
b, \(\frac{a}{b+c-a}+\frac{b}{c+a-b}+\frac{c}{a+b-c}\ge3\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2017\) và a + b + c = 2018. Tính \(A=\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\)
cho: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\) . CMR: \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)