Rút gọn biểu thức:
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\) (với x > 4)
Giải phương trình sau:
\(1,\sqrt{x-2}-\sqrt{x+1}=\sqrt{2\text{x}-1}-\sqrt{x+3}\)
\(2,x^2-6\text{x}+26=6\sqrt{2\text{x}+1}\)
\(3,\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7\text{x}+10}\right)=3\)
4,\(\sqrt[3]{x-4}-\sqrt{9-x}=-1\)
5,\(\left(x+1\right)\sqrt{16\text{x}+17}=8\text{x}^2-15\text{x}-23\)
Giúp mình với ạ mình đang cần gấp <3
giải hpt:\(\left\{{}\begin{matrix}\dfrac{4}{x+y}+3\sqrt{4\text{x}-8}=14\\\dfrac{5-x-y}{x+y}-2\sqrt{x-2}=\dfrac{-5}{2}\end{matrix}\right.\)
giải phương trình
\(\text{x}^2-4=3\sqrt{\text{x}^3-4\text{x}}\)
\(9\text{x}+17=6\sqrt{8\text{x}-1}+4\sqrt{\text{x}+3}\)
\(\sqrt{2\text{x}-1}+\text{x}=\sqrt{\text{x}}+\sqrt{\text{x}^2-\text{x}+1}\)
\(2\sqrt{\text{x}^2-\text{x}+1}+\sqrt{\text{x}^2+\text{x}+1}=\sqrt{\text{x}^4+\text{x}^2+1}+2\)
Giải hệ:
\(\left\{{}\begin{matrix}x^2+y^2+xy=5\\27x^3+6y^2x=2+y^3+30x^2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y^2+\frac{8xy}{x+y}=16\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\end{matrix}\right.\), \(\left\{{}\begin{matrix}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\\2\left(2x+\sqrt{y}\right)=\sqrt{2x+6}-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2y-3x-1=3x\sqrt{y}\left(\sqrt{1-x}-1\right)^3\\\sqrt{8x^2-3xy+4y^2}+\sqrt{xy}=4y\end{matrix}\right.\)
Cho các số a,b,c là các số k âm sao cho tổng hai số bất kì đều dương.CMR \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}+\frac{16\sqrt{ab+bc+ac}}{a+b+c}\ge8\)
Cho x,y,z là 3 số dương . Tìm Max của P=\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Tìm Max của M=\(\sqrt{x-2}+\sqrt{y+4}\) biết x+y=8
Cho biểu thức \(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a)Rút gọn A
b) Tìm giá trị nguyên của x để A nguyên
Giaỉ hệ phương trình :\(\left\{{}\begin{matrix}x^2+y^2+\frac{8xy}{x+y}=16\\\sqrt{x^2+12}+\frac{5}{2}\sqrt{x+y}=3x+\sqrt{x^2+5}\end{matrix}\right.\)
Cho x, y t/m \(\hept{\begin{cases}\text{x, y }\varepsilon R\\0\le x;y\le\frac{1}{2}\end{cases}}\). CMR: \(\frac{\sqrt{x}}{1+y}+\frac{\sqrt{y}}{1+x}\le\frac{2\sqrt{2}}{3}\)