Cho nửa đường tròn(O) đường kính AB. Gọi M là điểm bất kỳ nằm trên đường tròn(M khác A và M khác B). Vẽ đường tròn(M) tiếp xúc với AB tại H. Từ A và B lần lượt vẽ hai tiếp tuyến AC và BD với (M)(C,D là hai tiếp điểm)
a) Chứng minh C,M,D thẳng hàng
b) Chứng minh tổng AC+BD luôn không đổi khi M∈(O)
c) CD và AB cắt nhau tại K. Chứng minh \(OH\cdot OK=\dfrac{AB^2}{4}\)
Cho nửa đường tròn (O;R) đường kình AB, M là điểm trên nửa đường tròn, tiếp tuyến tại M cắt hai tiếp tuyến tạ A và B ở C và D a) Chứng minh: CD= AC+BD và tam giác COD vuông b) Chứng minh: AB là tiếp tuyến của đường tròn đường kính CD. Biết BM=R tính theo R diện tích tam giác ACM
Cho đường tròn (O) đường kính AB. Qua A, B lần lượt vẽ các tiếp tuyến d1 và d2 đến (O). Từ M bất kì trên (O) vẽ tiếp tuyến với đường tròn cắt d1 tại C, d2 tại D. Đg tròn đường kính CD cắt (O) tại E, F (E thuộc AM), Gọi I là g'd' của AD và BC
a) C/m: AB là tiếp tuyến của đường tròn đường kính CD
b) CHứng minh MI vuông góc với AB, 3 điểm E,I,F thẳng hàng
P/s: Mn giúp tớ phần c/m 3 điểm E,I,F thẳng hàng thôi nhé! Mình lm đc các ý trên rồi!
Cho nửa đường tròn O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đến AB. Vẽ đường tròn (M; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M( C và D là các tiếp điểm khác H)
a) Chứng minh rằng ba điểm C, M, D thẳng hàng và CD là tiếp tuyến của đường tròn (O)
b) Chứng minh rằng khi điểm M di chuyển trên nửa đường tròn (O) thì tổng AC + BD không đổi
c) Giả sử CD và AB cắt nhau tại I. Chứng minh rằng tích OH.OI không đổi
Cho (O; R), đường kính AB. tiếp tuyến tại M của đường tròn tâm o cắt 2 tiếp tuyến tại A và B lần lượt ở C và D. Vẽ (I, CD). Chứng minh AB tiếp xúc với (I) tại O.
Cho đường tròn tâm O bán kính 2 cm từ điểm A bên ngoài đường tròn , vẽ 2 tiếp điểm AB và AC vuông góc với nhau (B;C là tiếp điểm ) . lấy điểm M thuộc cung BC . vẽ tiếp tuyến của đường tròn M tại 2 tiếp tuyến lần lượt ở D và E
a) tứ giác ABOC là hình gì
b) tình chu vi tam giác ADE
c) tính góc DOE
Cho nửa đường tròn tâm O đường kính AB=2R. Trên nửa đường tròn lấy điểm M sao cho MB=R.
Tiếp tuyến tại M của đường tròn cắt các tiếp tuyến Ax, By lần lượt tại C và D (Ax và By cùng thuộc một
nửa mặt phẳng có bờ AB chứa điểm M)
a) Chứng minh tam giác COD vuông và AC+BD=CD
b) Tính OC theo R?
c) BC cắt đường tròn tại F (F khác B). Đường thẳng qua O vuông góc với BC cắt By tại E. Chứng minh
EF là tiếp tuyến của đường tròn (O).
d) Gọi K là giao điểm của OE và BC. Chứng minh DM=DK.
Cho nửa đường tròn tâm O đường kính AB=2R. Trên nửa đường tròn lấy điểm M sao cho MB=R.
Tiếp tuyến tại M của đường tròn cắt các tiếp tuyến Ax, By lần lượt tại C và D (Ax và By cùng thuộc một
nửa mặt phẳng có bờ AB chứa điểm M)
a) Chứng minh tam giác COD vuông và AC+BD=CD
b) Tính OC theo R?
c) BC cắt đường tròn tại F (F khác B). Đường thẳng qua O vuông góc với BC cắt By tại E. Chứng minh
EF là tiếp tuyến của đường tròn (O).
d) Gọi K là giao điểm của OE và BC. Chứng minh DM=DK.