Giải phương trình lượng giác:
\(\tan^3\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)}{\cos x}\)
Giải phương trình:
1.\(cos^3x.cos3x+sin^3x.sin3x=\frac{\sqrt{2}}{4}\)
2.\(cos^34x=cos^3x.cos3x+sin^3x.sin3x\)
3.\(cos^2x-4sin^2\left(\frac{x}{2}-\frac{\pi}{4}\right)+2=0\)
4.\(sin^4x+sin^4\left(x+\frac{\pi}{4}\right)=\frac{1}{4}\)
5.\(sin^6x+cos^6x=\frac{5}{6}\left(sin^4x+cos^4x\right)\)
6.\(sin^6x+cos^6x+\frac{1}{2}sinx.cosx=0\)
7.\(\frac{1}{2}\left(sin^4x+cos^4x\right)=sin^2x.cos^2x+sinx.cosx\)
8.\(sin^6x+cos^6x-3cos8x+2=0\)
9.\(sin^4x+cos^4x-2\left(sin^6\frac{x}{2}+cos^6\frac{x}{2}\right)+1=0\)
cos2x-√3 sin2x=sin3x+1
3sin2x+4cos2x+5cos2003x=0
√3sin(x-\(\frac{\pi}{3}\))\(+sin\left(x+\frac{\pi}{6}\right)-2sin1972x=0\)
\(\sqrt{2}cos\left(\frac{x}{5}-\frac{\pi}{12}\right)-\sqrt{6}sin\left(\frac{x}{5}-\frac{\pi}{12}\right)=2sin\left(\frac{x}{5}+\frac{2\pi}{3}\right)-2sin\left(\frac{3x}{5}+\frac{\pi}{6}\right)\)
Giải Pt
a. sin3x = sin \(\left(90^0-x\right)\)
b. cos(3x+ \(45^0\)) = -cosx
c. sin ( 2x+\(\frac{\pi}{3}\)) + sinx = 0
d. sin \(\left(x-\frac{2\pi}{3}\right)\)- cos2x=0
e. cos ( 2x - \(\frac{\pi}{4}\)) - sin ( 2x+\(\frac{\pi}{3}\)) =0
GPT sau: \(4\sin\left(x+\dfrac{\pi}{3}\right)-2\sin\left(2x-\dfrac{\pi}{6}\right)=\sqrt{3}\cos x+\cos2x-2\sin x+2\)
\(sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)tan^2x-cos^2\dfrac{x}{2}=0\)
cos22x = sin2( x +\(\frac{\pi}{3}\))
sin2(5x + \(\frac{\pi}{3}\)) - cos2( 3x + \(\frac{\pi}{4}\)) = 0
sin2( 4x +\(\frac{\pi}{3}\)) = sin2( \(\frac{7\pi}{5}\) - x )
Câu 1: Giải các phương trình sau:
a, \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2\)+\(\sqrt{3}cosx=2\)
b, \(\frac{\left(1-2sinx\right).cosx}{\left(1+2sinx\right)\left(1-sinx\right)}=\sqrt{3}\)
c, 5sinx-2=3(1-sinx).tan2x
d, \(\frac{2\left(sin^6x+cos^6\right)}{\sqrt{2}-2sinx}=0\)
e, cos23x.cos2x-cos2x=0
Câu 2: giải các phương trình sau:
a, sinx+cosx.sin2x+\(\sqrt{3}cos3x=2\left(cos4x+sin^3x\right)\)
b, \(\frac{\left(2-\sqrt{3}\right).cosx-2sin2\left(\frac{x}{2}-\frac{\pi}{4}\right)}{2cosx-1}\)
c, 8sin22x.cos2x=\(\sqrt{3}sin2x+cos2x\)
d, sin3x- \(\sqrt{3}cos^3x=sinxcos^2x-\sqrt{3}sin^2xcosx\)
cos²x + cos²2x + cos²3x = 1
sin²2x - sin²8x = sin\(\left(\dfrac{17\pi}{2}+10\pi\right)\)