Lời giải:
d)
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\sqrt{5-\sqrt{13+2\sqrt{12}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{(\sqrt{12}+1)^2}}}=\sqrt{6+2\sqrt{5-(\sqrt{12}+1)}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{(\sqrt{3}-1)^2}}\)
\(=\sqrt{6+2(\sqrt{3}-1)}=\sqrt{4+2\sqrt{3}}=\sqrt{(\sqrt{3}+1)^2}\)
\(=\sqrt{3}+1\)
e)
\(\frac{2}{\sqrt{3}-1}-\frac{3-2\sqrt{3}}{2-\sqrt{3}}=\frac{2}{\sqrt{3}-1}+\frac{\sqrt{3}(2-\sqrt{3})}{2-\sqrt{3}}=\frac{2}{\sqrt{3}-1}+\sqrt{3}\)
\(=\frac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}+\sqrt{3}=\frac{2(\sqrt{3}+1)}{3-1}+\sqrt{3}=\sqrt{3}+1+\sqrt{3}=2\sqrt{3}+1\)
d)
\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{12+2\cdot\sqrt{12}\cdot1+1}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\\ =\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\\ =\sqrt{6+2\sqrt{4-\sqrt{12}}}\\ =\sqrt{6+2\sqrt{3-2\cdot\sqrt{3}\cdot1+1}}\\ =\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\\ =\sqrt{6+2\left(\sqrt{3}-1\right)}\\ =\sqrt{6-2\sqrt{3}-2}\\ =\sqrt{4-2\sqrt{3}}\\ =\sqrt{3-2\sqrt{3}+1}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
e)
\(\frac{2}{\sqrt{3}-1}-\frac{3-2\sqrt{3}}{2-\sqrt{3}}\\ =\frac{2}{\sqrt{3}-1}+\frac{\sqrt{3}\left(\sqrt{3}-2\right)}{\sqrt{3}-2}\\ =\frac{2}{\sqrt{3}-1}+\sqrt{3}\\ =\frac{2+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\frac{5-\sqrt{3}}{\sqrt{3}-1}\\ =\frac{\left(5-\sqrt{3}\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^2-1}\\ -\frac{6\sqrt{3}-8}{2}=3\sqrt{3}-4\)
(bạn nhớ ktr đã nha)
d) \(=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\) \(=\sqrt{6+2\sqrt{4-\sqrt{12}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
e) \(=\frac{2\left(2-\sqrt{3}\right)-\left(\sqrt{3}-1\right)\left(3-2\sqrt{3}\right)}{\left(\sqrt{3}-1\right)\left(2-\sqrt{3}\right)}\) \(=\frac{4-2\sqrt{3}-3\sqrt{3}+3+6-2\sqrt{3}}{2\sqrt{3}-2+\sqrt{3}-3}\)
\(=\frac{13-7\sqrt{3}}{3\sqrt{3}-5}=\frac{3\sqrt{3}+18-5-10\sqrt{3}}{3\sqrt{3}-5}\)
\(=\frac{3\sqrt{3}-5+2\sqrt{3}\left(3\sqrt{3}-5\right)}{3\sqrt{3}-5}=\frac{\left(3\sqrt{3}-5\right)\left(1+2\sqrt{3}\right)}{3\sqrt{3}-5}\) \(=1+2\sqrt{3}\)