\(\dfrac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\)
\(\Rightarrow\dfrac{\left(x+y\right)^3-3x^2y-3xy^2-3xyz+z^3}{x^2-2xy+y^2+y^2-2yz+z^2+x^2-2xz+z^2}\)
\(\Rightarrow\dfrac{\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)}{2x^2+2y^2+2z^2-2xy-2yz-2xz}\)
\(\Rightarrow\dfrac{\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)
\(\Rightarrow\dfrac{\left(x+y+z\right)\left(x^2+2xy+z^2-xz-yz+z^2-3xy\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)
\(\Rightarrow\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)
\(\Rightarrow\dfrac{x+y+z}{2}\)
\(\Rightarrow\dfrac{1}{2}\left(x+y+z\right)\)