Vì x và y là hai đại lượng tỉ lệ thuận nên:
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}\) = k (k \(\ne\) 0)
và \(x_1=6;x_2=-9\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}=\frac{y_1-y_2}{x_1-x_2}=\frac{10}{6-\left(-9\right)}=\frac{10}{15}=\frac{2}{3}\)
\(\frac{y_1}{x_1}=\frac{2}{3}\Rightarrow y_1=\frac{2}{3}.x_1=\frac{2}{3}.6=4\)
\(\frac{y_2}{x_2}=\frac{2}{3}\Rightarrow y_2=\frac{2}{3}.x_2=\frac{2}{3}.\left(-9\right)=-6\)
Vậy: \(y_1+y_2=4+\left(-6\right)=-2\)
-2 đó bạn!
Do x1 tỉ lệ thuận với x2 nên:
x1/y1=x2/y2
suy ra x1-x2/y1 - ỳ= 6--9/10=15/10=1,5
suy ra 6/y1=-9/y2=1,5
y=6:1,5=4
y2= -9:15=-6
y1+y2=4+-6+-2