\(y'=3x^2+2\left(2m-1\right)x+m^2-4m+1\) (1)
Hàm có 2 điểm cực trị trái dấu \(\Leftrightarrow\left(1\right)\) có 2 nghiệm trái dấu
\(\Leftrightarrow3\left(m^2-4m+1\right)< 0\)
\(\Leftrightarrow2-\sqrt{3}< m< 2+\sqrt{3}\)
\(y'=3x^2+2\left(2m-1\right)x+m^2-4m+1\) (1)
Hàm có 2 điểm cực trị trái dấu \(\Leftrightarrow\left(1\right)\) có 2 nghiệm trái dấu
\(\Leftrightarrow3\left(m^2-4m+1\right)< 0\)
\(\Leftrightarrow2-\sqrt{3}< m< 2+\sqrt{3}\)
Tìm m để y = 2x3-3(2m+1)x2+6m(m+1)x+2 có 2 điểm cực trị trái dấu
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Cho hàm số \(y=-2x^3+(2m-1)x^2-(m^2-1)x+2\). Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có hai điểm cực trị?
Tìm tất cả các giá trị thực của tham số m để hàm số y = x^3 - (3m +1).x^2 + (2m -1)x +m +1 . Có bao nhiêu số tự nhiên m<100 để đồ thị hs có hai điểm cực trị nằm về 2 phía của trục hoành.
Cho hàm số \(y=x^3+\left(1-2m\right)x^2+\left(2-m\right)x+m+2\) (1) với m là tham số thực
Xác định m để đồ thị hàm số (1) đạt cực đại và cực tiểu, đồng thời có hoành độ của điểm cực tiểu nhỏ hơn 1
Tìm m để hàm số \(y=\frac{1}{3}x^3-mx^2+\left(2m-1\right)x+2\) có 2 điểm cực trị dương
Tìm tất cả các giá trị thực của m để hàm số y=mx^4 - (m+1)x^2 + 2m -1 có 3 cực trị
Cho hàm số y= mx^2 +2(m^2-5)x^4 +4 . Có bao nhiêu số nguyên m để hàm số có 3 điểm cực trị trong đó có đúng 2 điểm cực đại và 1 điểm cực tiểu.
Cho hàm số \(y=x^4-2m\left(m+1\right)x^2+m^2\) với m là tham số thực.
a) Tìm m để đồ thị hàm số trên có 3 cực trị tạo thành 3 đỉnh của tâm giác vuông
b) Tìm m để đồ thị hàm số trên có 3 cực trị A, B, C sao cho OA = BC; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại