Câu 9. Cho tam giác đều ABC có cạnh bằng 4cm . Bán kính đường tròn nội tiếp tam giác ABC bằng
Tỉ số bán kính đường tròn nội tiếp và đường tròn ngoại tiếp một tam giác đều bằng
(A) \(\dfrac{1}{3}\) (B) \(\dfrac{1}{2}\) (C) \(\dfrac{1}{\sqrt{2}}\) (D) \(2\)
Hãy chọn phương án đúng ?
Cho tứ giác ABCD nội tiếp nửa đường tròn (O) đường kính AD, hai đường chéo AC và BD cắt nhau tại H. Gọi E là chân đường vuông góc kẻ từ H đến AD.
1. CH/m các tứ giác ABHE và DCHE nội tiếp.
2. C/m EH là đường phân giác góc BEC.
3. Gọi M là giao điểm của hai tia AB và DC chứng minh 3 điểm M,H,E thẳng hàng.
Cho đường tròn tâm O bán kính R có đường kính AB và 2 tiếp tuyến Ax, By (Ax, By cùng thuộc nửa mặt phẳng bờ AB). Một tiếp tuyến khác tại M cắt Ax ở C và By ở D
a, CM: CD = AC + BD
b, Tam giác CDO vuông
c, AC.BD không đổi khi M đổi
d, AM cắt OC tại I, BM cắt OD tại K. Tứ giác CIMK là hình gì? Tìm vị trí của M để OIMK là hình vuông
e, Kẻ MH vuông góc với AB. CMR: BC đi qua trung điểm của MH
vẽ đường tròn ngoại tiếp tam giác nhọn ABC và vẽ đường kính AD. AH là đường cao của tam giác. Chứng minh tam giác AHB đồng dạng với tam giác ACB
Cho tam giác MAB vuông tại M ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng
cho dường tròn O bán kính R đường kính AB, AC =R
a) chứng minh tam giác ABC vuông
b)tìm số đo góc B của tam giác ABC
c) gọi M là trung điểm của BC. qua vẽ tiếp tuyến Bx với đường tròn, tiếp tuyến này cắt tia OM tại N.CM NC là tiếp tuyến cảu đường tròn (O)
Cho đường tròn tâm O, bán kính R và M là một điểm nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là các tiếp điểm). Gọi E là giao điểm của AB và OM.
a) Chứng minh tứ giác MAOB nội tiếp được trong một đường tròn.
b) Tính độ dài đoạn thẳng AB và ME biết OM = 5cm và R = 3cm.
c) Kẻ tia Mx nằm trong góc AMO cắt đường tròn tại 2 điểm phân biệt C và D (C nằm giữa M và D). Chứng minh rằng góc MEC = góc OED
cho tam giác MNP có MN=MP nội tiếp đường tròn tâm O, các đường cao MA, NP, PC cắt nhau tại H. a, cm tứ giác MPHC là tứ giác nội tiếp. xác định tâm I của đường tròn ngoại tiếp tức giác đó
b, cm MC. MP= MH.MA
C, cm AB là tiếp tuyến đường tròn tâm I