ĐKXĐ: x<>5; x<>-6
\(\dfrac{x+6}{x-5}+\dfrac{x-5}{x+6}=\dfrac{2x^2+23x+61}{x^2+x-30}\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
=>23x+61=2x+61
=>x=0
ĐKXĐ: x<>5; x<>-6
\(\dfrac{x+6}{x-5}+\dfrac{x-5}{x+6}=\dfrac{2x^2+23x+61}{x^2+x-30}\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
=>23x+61=2x+61
=>x=0
Giải các phương trình sau:
1. \(a,\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{2x-6}\)
\(b,\dfrac{1}{x-2}+\dfrac{5}{x+1}=\dfrac{3}{2-x}\)
\(c,\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
2. \(a,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(b,2x^2-6x+1\)
4.Giải phương trình
a) \(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)
b)\(\dfrac{1}{x-1}+\dfrac{2}{x+1}=\dfrac{x}{x^2-1}\)
c)\(5+\dfrac{76}{x^2-16}=\dfrac{2x-1}{x+4}-\dfrac{3x-1}{4-x}\)
d)\(\dfrac{90}{x}-\dfrac{36}{x-6}=2\)
e)\(\dfrac{1}{x}+\dfrac{1}{x+10}=\dfrac{1}{12}\)
f)\(\dfrac{x+3}{x-3}-\dfrac{1}{x}=\dfrac{3}{x\left(x-3\right)}\)
g)\(\dfrac{3}{x+2}-\dfrac{2}{x-2}+\dfrac{8}{x^2-4}=0\)
h)\(\dfrac{3}{x+2}-\dfrac{2}{x-3}=\dfrac{8}{\left(x-3\right)\left(x+2\right)}\)
i)\(\dfrac{x}{2x+6}-\dfrac{x}{2x+2}=\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
k)\(\dfrac{x}{x+1}-\dfrac{2x-3}{1-x}=\dfrac{3x^2+5}{x^2-1}\)
l)\(\dfrac{5}{x+7}+\dfrac{8}{2x+14}=\dfrac{3}{2}\)
m)\(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
Cần gấp ạ
Giải PT sau:
a, 3x - 7 = 0
b, 8 - 5x = 0
c, 3x - 2 = 5x + 8
d, \(\dfrac{3x-2}{3}\) = \(\dfrac{1-x}{2}\)
e, ( 5x + 1)(x - 3) = 0
f, (x + 1)(2x - 3) = 0
g, 4x(x + 3) - 5(x + 3) = 0
h, 8(x - 6) - 2x(6 - x) = 0
i, \(\dfrac{2}{x-1}\) + \(\dfrac{1}{x}\) = \(\dfrac{2x+5}{x^2-x}\)
k, \(\dfrac{3}{x+2}\) - \(\dfrac{2}{x-2}\) = \(\dfrac{2-x}{x^2-4}\)
m, \(\dfrac{3}{x}\) - \(\dfrac{2}{x-3}\) = \(\dfrac{4-x}{x^2-3}\)
n,\(\dfrac{3}{2x+10}\)+ \(\dfrac{2x}{x^2-25}\) = \(\dfrac{3}{x-5}\)
u, \(\dfrac{2}{x+3}\) - \(\dfrac{3}{x-2}\) = \(\dfrac{x+4}{\left(x+3\right)\left(x-2\right)}\)
Giải phương trình :
a)\(\dfrac{3x-2}{5}+\dfrac{x-1}{9}=\dfrac{14x-3}{15}-\dfrac{2x+1}{9}\)
b)\(\dfrac{x+3}{2}-\dfrac{2-x}{3}-1=\dfrac{x+5}{6}\)
c)\(\dfrac{x+5}{2010}+\dfrac{x+4}{2011}+\dfrac{x+3}{2012}+\dfrac{x+2}{2013}=-4\)
d)\(\dfrac{x-12}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-72}{16}\)
Cho các đa thức: \(A=x-5x^2+8x-4\)
\(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
a) Phân tích A, B thành nhân tử
b) CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
Cho đa thức: \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\). CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
Giải phương trình:
b) \(\dfrac{7}{2}-\left(\dfrac{x}{5}-\dfrac{1}{4}\right)=\dfrac{9}{2}\)
c) (x+2) . (x-5). (x-6) (x+3) = 180
d) \(x-\dfrac{\dfrac{x}{2}-\dfrac{3+x}{4}}{2}=\dfrac{2x-\dfrac{10-7x}{3}}{2}-x-1\)
e) \(\left(\dfrac{1}{1.101}+\dfrac{1}{2.102}+........+\dfrac{1}{10.110}\right).\left(x-3\right)=\dfrac{1}{1.11}+\dfrac{1}{2.12}+.......+\dfrac{1}{100.110}\)
Giải phương trình :
a,\(\dfrac{2}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}=\dfrac{1}{x^2-3x+2}\)
b, \(\dfrac{2x+3}{x^2+3x+2}+\dfrac{6}{x^2-x-6}=\dfrac{2x-2}{x^2-2x-3}\)
\(\dfrac{4X^2+9}{2\left(X^2+6\right)}=\dfrac{7}{X^2+5}+\dfrac{6}{X^2+3}+\dfrac{5}{X^2+1}\)