A =\(\dfrac{x\sqrt[]{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}+1}+\dfrac{\sqrt[]{x}+3}{3-\sqrt[]{x}}\)
a. rút gọn A
b. Tính A với x = \(14-6\sqrt[]{5}\)
c. tìm min A
A=\(\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn A
b) Tính A với x=14-6\(\sqrt{5}\)
c) Tìm Min A
Rút gọn BT với \(x>0;x\ne8\)
\(P=\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)+\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\left(\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x^2}+2\sqrt[3]{x}}\right)\)
rút gọn biểu thức
P=\(\dfrac{8-x}{2+\sqrt[3]{x}}:\left(2+\dfrac{\sqrt[3]{x^2}}{2+\sqrt[3]{x}}\right)\)+\(\left(\sqrt[3]{x}+\dfrac{2\sqrt[3]{x}}{\sqrt[3]{x}-2}\right)\).\(\left(\dfrac{\sqrt[3]{x^2}-1}{\sqrt[3]{x^2}+\sqrt[3]{x}}\right)\)
a.Cmr nếu \(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a\) thì \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
b.Giải pt \(x^3-x^2-1=\dfrac{1}{3}\)
Giải phương trình
\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x-27\)
\(\sqrt{x+3}+\sqrt{y-2}+\sqrt{z-3}=\dfrac{1}{2}\left(x+y+z\right)\)
\(x+y+4=2\sqrt{x}+4\sqrt{y-1}\)
\(x^2+9x+20=2\sqrt{3x+10}\)
\(\dfrac{x+y}{\sqrt[3]{x}+\sqrt[3]{y}}+\dfrac{x-y}{\sqrt[3]{x}-\sqrt[3]{y}}\)
rút gọn
Cho a, b, c, x, y, z thoả mãn: x + y + z = 1 và \(\dfrac{a}{x^3}=\dfrac{b}{y^3}=\dfrac{c}{z^3}\). Chứng minh rằng: \(\sqrt[3]{\dfrac{a}{x^2}+\dfrac{b}{y^2}+\dfrac{c}{z^2}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
1.Tìm x:\(\left(x-3\right)^3\)=\(\dfrac{1}{64}\)
2.Chứng minh:
a,(\(\sqrt[3]{\sqrt[]{9+4\sqrt[]{5}}}\).\(\sqrt[3]{\sqrt[]{5.2}}\)).\(\sqrt[3]{\sqrt[]{5-2}}\) -2,1 <0
3.Rút gọn,\(\dfrac{\sqrt[3]{a^4}+\sqrt[3]{a^2b^2}+\sqrt[3]{b^4}}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\)
cho x =\(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
y =\(\sqrt[3]{17+2\sqrt{2}}+\sqrt[3]{17-2\sqrt{2}}\)
Tính M=\(x^3+y^3-3\left(x+y\right)+2004\)