Áp dụng dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c=1\)
\(Ta\) \(có\) :
\(\dfrac{1^3\cdot1^2\cdot1^{2018}}{1^{2019}}=1\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c=1\)
\(Ta\) \(có\) :
\(\dfrac{1^3\cdot1^2\cdot1^{2018}}{1^{2019}}=1\)
Bài 17: Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện : \(a+b\ne-c\) và \(\dfrac{a+b-c}{c}\)=\(\dfrac{b+c-a}{a}\)=\(\dfrac{c+a-b}{b}\). Tính giá trị biểu thức P=\(\left(1+\dfrac{b}{a}\right)\)x\(\left(1+\dfrac{a}{c}\right)\)x\(\left(1+\dfrac{c}{b}\right)\)
Bài 1 : Thực hiện phép tính: P=\(\sqrt{\dfrac{9}{25}}+2018^0+\left[-0.4\right]\)
Tìm x thỏa mãn :\((\sqrt{x}-4)-(\left[x+2\right]-1).\left(x^2-3\right)=0\)
Bài 2 :
a, Tìm x;y biết : \(\dfrac{x+y}{2017}=\dfrac{xy}{2018}=\dfrac{x-y}{2019}\)
b.Cho x; y; z;a;b;c thỏa mãn: \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\). CMR:\(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\) ( với các điều kiện các mẫu thức khác 0)
Cho 3 số a,b,c thỏa mãn: \(\dfrac{a}{2017}=\dfrac{b}{2018}=\dfrac{c}{2019}\). Tính giá trị của biểu thức:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bằng 3 các(giả thiết a khác b;c khác d và mỗi số a,b,c,d khác 0)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) Chứng minh rằng:
a, \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b \(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)
Bài 4: Tìm x,y nguyên biết
b,xy+3x-y=6
c,x-2xy+y-3=0
d,\(2x+\dfrac{1}{7}\)=\(\dfrac{1}{y}\)
Bài 5: Cho :\(\dfrac{2a+b+c+d}{a}+\dfrac{2b+c+d+a}{b}+\dfrac{2c+a+b+d}{c}+\dfrac{2d+c+b+a}{d}\)
Tính M=\(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Bài 6 : Tìm x,y biết:
a,\(\dfrac{x}{2}=\dfrac{y}{4}\) và \(x^2y^2=2\)
b,4x=7y và \(x^2+y^2=260\)
Bài 7:Tìm x biết:
a,\(\left|x=2020\right|+\left|x-2018\right|=2019\)
b,\(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
Bài 8: Cho \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{\text{z}}{5}\)
Tính M=\(\dfrac{2x+3y-\text{z}}{5x-4y+3\text{z}}\)
Bài 9: Tìm GTNN
A=\(2x^2+2y^2+2xy-14x-16y-2056\)
1) Cho 2 số hữu tỉ x, y có tổng bằng 4. Chứng minh rằng x.y ≤ 4
2) Cho 3 số hữu tỉ dương a, b, c thỏa mãn: \(\dfrac{a+b-c}{a}=\dfrac{b+c-a}{b}=\dfrac{c+a-b}{c}\)
Tính giá trị của biểu thức P = \(\dfrac{a^{1008}.b^{1009}.c}{a^{2018}+b^{2018}+c^{2018}}\)
Cho a + b + c = 2018 và \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{1}{10}\). Tính \(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
a) Cho các số a,b,c,d khác 0 . Tính :
T = \(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thoả mãn \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
b) Tìm số tự nhiên M nhỏ nhất có 4 chữ số thoả mãn điều kiện
M=a+b=c+d=e+f
Nếu câu b thiếu j thì các bạn cứ bỏ qua nha