Đặt \(\dfrac{a}{2007}=\dfrac{b}{2008}=\dfrac{c}{2009}=k\)
=>a=2007k; b=2008k; c=2009k
\(4\left(a-b\right)\left(b-c\right)=4\left(2007k-2008k\right)\left(2008k-2009k\right)\)
\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)
\(\left(c-a\right)^2=\left(2009k-2007k\right)^2=4k^2\)
Do đó: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)