a) Tính giá trị của biểu thức: A=\(\dfrac{\sqrt{\dfrac{5}{2}-\sqrt{6}}+\sqrt{\dfrac{5}{2}+\sqrt{6}}}{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}\)
b) Cho biểu thức B=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\times\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{\sqrt{x}+x}{\sqrt{x}+1}\right)\)(với x≥0;x≠1)
Rút gọn B rồi tìm điều kiện của x để B<0
B= \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}-\dfrac{\sqrt{50}}{\sqrt{8}}\)
C=\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}\)
cho phương trình \(x^2-\left(2m+3\right)x+2m+5=0\)
tìm m để phương trình có 2 nghiệm dương phân biệt x1;x2 thỏa mãn \(\dfrac{1}{\sqrt{x1}}+\dfrac{1}{\sqrt{x2}}=\dfrac{4}{3}\)
cho hàm số y = (2m - 3)x - 1 ( m khác \(\dfrac{3}{2}\)\(\dfrac{ }{ }\)) có đồ thị đường thẳng (d). Tìm giá trị của m sao cho khoảng cách từ gốc tọa độ đến đường thẳng (d) bằng \(\dfrac{1}{\sqrt{5}}\)
Cho 3 số dương a,b,c. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)
\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)
đường thẳng \(y=\sqrt{mx}+2\) cắt đưởng thẳng \(y=\dfrac{1}{2}x-5\) khi và chỉ khi
A. m ≥ 0 và m ≠ \(\dfrac{1}{2}\)
B. m ≥ 0 và m ≠ \(\dfrac{1}{4}\)
C. m > 0 và m ≠ \(\dfrac{1}{4}\)
D. m > 0 và m ≠ \(\dfrac{1}{2}\)
cho hàm số y=(√3−1)x+5y=(3−1)x+5 khi x=√3 + 4 thì y nhận giá trị là
A. 1
B. \(\dfrac{\sqrt{3}+9}{\sqrt{3}-1}\)
C. -1
D. \(\dfrac{\sqrt{3}+9}{1-\sqrt{3}}\)
Cho a,b,c là 3 cạnh của tam giác
C/m:\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)