Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+1+3y-2}{5+7}=\dfrac{2x+3y-1}{12}=\dfrac{2x+3y-1}{6x}\)
\(\Rightarrow6x=12\Rightarrow x=2\)
Thay vào biểu thức ta có:
\(2.2+\dfrac{1}{5}=\dfrac{3y-2}{7}\Rightarrow1=\dfrac{3y-2}{7}\Rightarrow3y-2=7\)
\(\Rightarrow3y=9\Rightarrow y=3\)
Vậy \(\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Chúc bạn học tốt!
Bổ sung bài làm bạn dưới thêm 1 trường hợp:
TH2: \(2x+3y-1=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x+1=0\\3y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)