\(\dfrac{2004\cdot2007+6}{2005\cdot2005+2009}=\dfrac{2004\cdot2005+2004\cdot2+6}{2005\cdot2004+2005+2009}\\ =\dfrac{2004\cdot2005+4014}{2004\cdot2005+4014}=1\)
\(\dfrac{2004\cdot2007+6}{2005\cdot2005+2009}=\dfrac{2004\cdot2005+2004\cdot2+6}{2005\cdot2004+2005+2009}\\ =\dfrac{2004\cdot2005+4014}{2004\cdot2005+4014}=1\)
Cho \(\dfrac{a}{b} = \dfrac{c}{d}\) . Chứng minh :
a, \(\dfrac{a^{2005}}{b^{2005}} = \dfrac{(a-c)^{2005}}{(b-d)^{2005}}\)
b, \(\dfrac{(a^2+b^2)^3}{(c^2+d^2)^3}\) =\(\dfrac{a^3+b^3)^2}{(c^3+d^3)^2}\)
c, \((\dfrac{a-b}{c-d})^{2005}\) = \(\dfrac{2.a^{2005}-b^{2005}}{2.c^{2005}-d^{2005}}\)
d, \(\dfrac{(a^2-b^2)^5}{(c^2-d^2)^5} = \) \(\dfrac{a^{10}+b^{10}}{c^{10}+d^{10}}\)
e, \(\dfrac{2.a^{2005}+5.b^{2005}}{2.c^{2005}+5.d^{2005}}\) = \(\dfrac{(a+b)^{2005}}{(c+d)^{2005}}\)
f, \(\dfrac{(a^{2004}+b^{2004})^{2005}}{(c^{2004}+d^{2004})^{2005}}\) = \(\dfrac{(a^{2005} -b^{2005})^{2004}}{(c^{2005}-d^{2005})^{2004}}\)
Chứng minh \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2005^2}< \dfrac{2004}{2005}\)
Cho \(\left(2x_1-3y_1\right)^{2004}+\left(2x_2+3y_2\right)^{2004}+\left(2x_3+3y_3\right)^{2004}+...+\left(2x_{2005}+3y_{2005}\right)^{2004}\le0\)
Chứng minh rằng: \(\dfrac{x_1+x_2+x_3+...+x_{2005}}{y_1+y_2+y_3+...+y_{2005}}=1,5\)
Tìm x :
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-3}{2006}\)
A=\(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}+\left(\dfrac{1-3-5-7-...-49}{89}\right)\)
B=\(\dfrac{212.3^5.4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^4.49^2}{\left(125.71^3+59.14^3\right)}\)
C=\(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
D=\(\left(\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}\right)+\left(\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac{5}{11}-\dfrac{5}{12}}\right):\dfrac{1890}{2005}+115\)
E=13+23+...+103=3025
Tính F=23+42+63+...+203=?
Tính giá trị biểu thức:
\(D=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}+\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}+\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}+\dfrac{2}{2004}}{\dfrac{2}{2002}+\dfrac{3}{2003}+\dfrac{3}{2004}}\)
\(H=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2011}{1}+\dfrac{2010}{2}+...+\dfrac{1}{2011}}\)
\(I=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2012}}{\dfrac{2012}{2}+\dfrac{2012}{3}+...+\dfrac{2012}{2011}}\)
Help me!
1, P = \(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}\) - \(\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{2}{2004}}\)
2, Q = ( \(\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}\) + \(\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac{5}{11}-\dfrac{5}{12}}\) ) : \(\dfrac{1980}{3758}\) + 155
3, A = 1.3 + 2.4 + 3.5 +....+ 97.99 + 98.100
4, B = 1.2.3 + 2.3.4. +...+ 48.49.50
5, C = \(\dfrac{1}{1.2.3.4}\) + \(\dfrac{1}{2.3.4.5}\) +...+ \(\dfrac{1}{27.28.29.30}\)
6, D = 1 + \(2^2\) + \(2^4\) + \(2^6\) + .... +\(2^{200}\)
7, E = \(\dfrac{1}{3.5}\)+ \(\dfrac{5}{5.7}\) +...+ \(\dfrac{1}{97.99}\)
8) \(A=\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
9) \(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{2014}}+\dfrac{1}{3^{2015}}\)
10) \(P=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2005}}{\dfrac{2004}{1}+\dfrac{2003}{2}+\dfrac{2002}{3}+...+\dfrac{1}{2004}}\)
Chứng minh\(B=1-\dfrac{1}{2^2}-\dfrac{1}{3^2}-\dfrac{1}{4^2}-...-\dfrac{1}{2004^2}>\dfrac{1}{2004}\)
Chứng minh \(S=\dfrac{1}{2^2}-\dfrac{1}{2^4}+\dfrac{1}{2^6}-...+\dfrac{1}{2^{4n-2}}-\dfrac{1}{2^{4n}}+...+\dfrac{1}{2^{2002}}-\dfrac{1}{2^{2004 }}< 0.2\)