Sửa đề: \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
Ta có: \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)
\(=\dfrac{c-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\dfrac{a-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\dfrac{b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\dfrac{0}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)