dễ mà
Ta có Đặt A= 1/1+1/2+...+1/99+1/100
Suy ra A = 2-1 +1-1/2 +1/2- 1/3 +....+1/99 -1/100
Suy ra A= 2-1 -1/100
A= 200/100-100/100-1/100
A= 99/100
1/1+1/2+.........+1/99+1/100
= 1-1/2+1/2-.......+1/99-1/100
=1-1/100
=99/100
dễ mà
Ta có Đặt A= 1/1+1/2+...+1/99+1/100
Suy ra A = 2-1 +1-1/2 +1/2- 1/3 +....+1/99 -1/100
Suy ra A= 2-1 -1/100
A= 200/100-100/100-1/100
A= 99/100
1/1+1/2+.........+1/99+1/100
= 1-1/2+1/2-.......+1/99-1/100
=1-1/100
=99/100
Cho A=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{2}{98}+\dfrac{1}{99}}\)
Tính A
Chứng minh rằng
\(100-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)= \(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}\)
tính tổng
S=\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\)
A=1+\(\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{99}\)
B= \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...\dfrac{1}{100}\)
C=\(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)
K=\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}\)
CMR:\(\dfrac{1}{5}< K< \dfrac{1}{3}\)
BT1: CMR:
a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)
b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)
d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)
BT2: Tính tổng
a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)
BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
CMR: 1 < S < 2
Chứng minh :
\(\dfrac{1}{3} -\dfrac{2}{3^{2}} + \dfrac{3}{3^{3}}-...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}<\dfrac{3}{16}\)
Kết quả của tích (1-\(\dfrac{1}{2}\))(1-\(\dfrac{1}{3}\))(1-\(\dfrac{1}{4}\))...(1-\(\dfrac{1}{99}\)) là:
A.\(\dfrac{1}{99}\) B.\(\dfrac{1}{97}\)
C.\(\dfrac{1}{98}\) D. \(\dfrac{1}{100}\)
Tính:
a, \(\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\)
b, \(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{100}-1\right)\)
c, \(C=\dfrac{4}{30}+\dfrac{4}{70}+\dfrac{4}{126}+...+\dfrac{4}{798}\)
Rút gọn \(C=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}+\dfrac{1}{8.3^{99}}\)