\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{99}\right)=\dfrac{1}{2}\cdot\dfrac{2}{3}...\dfrac{98}{99}=\dfrac{1}{99}\)
Chọn A
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}....\dfrac{98}{99}\)
\(=\dfrac{1.2.3....98}{2.3.4....99}=\dfrac{1}{99}\)
- Đáp án A.
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{99}\right)\\ =\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{98}{99}\\ =\dfrac{1\cdot2\cdot3\cdot...\cdot98}{2\cdot3\cdot4\cdot...\cdot99}=\dfrac{1}{99}\)
Vậy đáp án (A) đúng.