Cho tam giác BDC nhọn. Kẻ BM vuông DC(M thuộc DC) CA vuông BD( A thuộc BD). Gọi I là trung điểm của AB, qua I kẻ đường thẳng vuông góc với AB và cắt CB tại O, qua M kẻ đường thẳng vuông góc vs MO cắt DA tại K. CM: KA.KB = KM2
Cho ΔABC nhọn (AB < AC). Kẻ đường cao AH. Kẻ HD ⊥ AB tại E. Gọi O là trung điểm AH. Qua D kẻ đường thẳng vuông góc DO, qua E kẻ đường thẳng vuông góc EO, 2 đường thẳng này cắt nhau tại I. C/m: AI đi qua trung điểm của BC.
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với Ab tại B, qua C kẻ đường thẳng vuông góc với AC tại C, chúng cắt nhau tại K. Gọi M là trung điểm của BC
a) Chứng minh: H, M, K thẳng hàng
b) Tam giác ABC thỏa mãn điều kiện gì để tứ giác BHCK là hình thoi
c) Gọi O là trung điểm của AK, CH giao với MA tại G. Chứng minh: G là trọng tâm của tam giác ABC
Cho hình thang ABCD có đáy lớn CD. Qua A kẻ đường thẳng song song với BC cắt đường chéo BD tại M và cắt CD tại I. Qua B kẻ đường thẳng song song với AD cắt CD tại K. Qua K kẻ đường thẳng song song với BD cắt BC ở P. Chứng minh Rằng MP song song với DC
Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O.Một đường thẳng kẻ qua A cắt BC tại M và CD tại N.Gọi K là giao điểm của MO và BN.Chứng minh rằng CK\(\perp\)BN
Cho \(\Delta\)ABC vuông tại A. Biết AB =6cm, AC = 8cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD
b)Gọi I là giao điểm của BD và AH. Chứng minh:\(\Delta\)AID cân
c) Qua I kẻ đường thẳng song song với AC cắt BC tại K.Chứng minh:\(\dfrac{HK}{KC}\)=\(\dfrac{HB}{AB}\)
d)Gọi E là giao điểm của AK và I,F là trung điểm của AC.Chứng minh:H,E,F thẳng hàng
Cho tam giác ABC có 3 góc nhon (AB<AC), đường cao AH. Qua H vẽ HM ⊥ AB, M ϵ AB và HN ⊥ AC, N ϵ AC.
a) Chứng minh ΔAMH ∼ ΔAHB.
b) Chứng AN . AC= \(AH^2\)
c) Vẽ đường cao BD cắt AH tại E. Qua D vẽ đường thẳng song song với MN cắt AB tại F. Chứng minh góc AEF = góc ABC.
Bạn nào làm hộ mình với mai mình phải nộp r
Cho tam giác abc vuông tại a, AB<AC. Trên bc lấy D,E sao cho BD=BA, CE=CA . Gọi AE cắt đường thẳng qua B vuông góc với BC tại K. Gọi AD cắt đường thẳng qua C vuông góc với BC tại L. BL cắt CK tại I .CM: AI chia đôi DE