Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Rosie

đặt Pn= \(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+....+n}\right)\)

Tìm tất cả các số nguyên dương n (n>1) sao cho \(\frac{1}{P_n}\)là số nguyên

Nguyễn Hoàng Long
13 tháng 2 2020 lúc 22:55

Pn=\(\frac{2}{3}\times\frac{5}{6}\times...\times\frac{\frac{\left(n+1\right)n}{2}-1}{\frac{\left(n+1\right)n}{2}}\)

= \(\frac{4}{6}\times\frac{10}{12}\times...\times\frac{n\left(n+1\right)-2}{n\left(n+1\right)}\)

= \(\frac{1\times4}{2\times3}\times\frac{2\times5}{3\times4}\times...\times\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

= \(\frac{1\times2\times...\times\left(n-1\right)}{2\times3\times...\times n}\times\frac{4\times5\times...\times\left(n+2\right)}{3\times4\times...\times\left(n+1\right)}\)

= \(\frac{1}{n}\times\frac{n+2}{3}\)

=\(\frac{n+2}{3n}\)

=> \(\frac{1}{Pn}\)=\(\frac{3n}{n+2}\)

Đến đây thì bạn tự giải tiếp nhé.

Chúc bạn học tốt!

Khách vãng lai đã xóa
Nguyễn Việt Lâm
13 tháng 2 2020 lúc 23:04

\(1+2+...+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(\Rightarrow P_n=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)

\(P_n=\frac{1.2.3...\left(n-1\right)}{2.3.4...n}.\frac{4.5...\left(n+2\right)}{3.4...\left(n+1\right)}=\frac{n+2}{3n}\)

\(\Rightarrow\frac{1}{P_n}=\frac{3n}{n+2}=3-\frac{6}{n+2}\in Z\)

\(\Rightarrow n+2=Ư\left(6\right)=\left\{3;6\right\}\Rightarrow n=\left\{1;4\right\}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Wibu
Xem chi tiết
Tagami Kera
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
Quỳnh Như
Xem chi tiết
Ngu như bò
Xem chi tiết
Halley Phạm
Xem chi tiết
thu dinh
Xem chi tiết
•Pɦươйǥ Ňɦเ⁀ᶦᵈᵒᶫ
Xem chi tiết
Nguyễn Bùi Anh Tuấn
Xem chi tiết