Hãy viết các số sau theo thứ tự tăng dần :
a) \(\left(0,3\right)^{\pi};\left(0,3\right)^{0,5};\left(0,3\right)^{\dfrac{2}{3}};\left(0,3\right)^{3,1415}\)
b) \(\sqrt{2^{\pi}};\left(1,9\right)^{\pi};\left(\dfrac{1}{\sqrt{2}}\right)^{\pi};\pi^{\pi}\)
c) \(5^{-2};5^{-0,7};5^{\dfrac{1}{3}};\left(\dfrac{1}{5}\right)^{2,1}\)
d) \(\left(0,5\right)^{-\dfrac{2}{3}};\left(1,3\right)^{-\dfrac{2}{3}};\pi^{-\dfrac{2}{3}};\left(\sqrt{2}\right)^{-\dfrac{2}{3}}\)
Tính đạo hàm của các hàm số :
a) \(y=\left(2x^2-x+1\right)^{\dfrac{1}{3}}\)
b) \(y=\left(4-x-x^2\right)^{\dfrac{1}{4}}\)
c) \(y=\left(3x+1\right)^{\dfrac{\pi}{2}}\)
d) \(y=\left(5-x\right)^{\sqrt{3}}\)
Tính đạo hàm của các hàm số đã cho ở bài tập 2.6 ?
a) \(y=\left(x^2-4x+3\right)^{-2}\)
b) \(y=\left(x^3-8\right)^{\dfrac{\pi}{3}}\)
c) \(y=\left(x^3-3x^2+2x\right)^{\dfrac{1}{4}}\)
d) \(y=\left(x^2+x-6\right)^{-\dfrac{1}{3}}\)
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau :
a) \(y=x^{-3}\)
b) \(y=x^{-\dfrac{1}{2}}\)
c) \(y=x^{\dfrac{\pi}{4}}\)
Tìm tập xác định của các hàm số sau :
a) \(y=\left(x^2-4x+3\right)^{-2}\)
b) \(y=\left(x^3-8\right)^{\dfrac{\pi}{3}}\)
c) \(y=\left(x^3-3x^2+2x\right)^{\dfrac{1}{4}}\)
d) \(y=\left(x^2+x-6\right)^{-\dfrac{1}{3}}\)
Tìm tập xác định của các hàm số sau :
a) \(y=\left(x^2-4x+3\right)^{-2}\)
b) \(y=\left(x^3-8\right)^{\dfrac{\pi}{3}}\)
c) \(y=\left(x^3-3x^2+2x\right)^{\dfrac{1}{4}}\)
d) \(y=\left(x^2+x-6\right)^{-\dfrac{1}{3}}\)
Cho hàm số \(f\left(x\right)=\tan x2\cot x-\sqrt{2}\cos x+2\cos^2x\) có nguyên hàm là \(F\left(x\right)\) và \(F\left(\frac{\pi}{4}\right)=\frac{\pi}{2}\).Tìm nguyên hàm \(F\left(x\right)\) của hàm số đã cho.
Tìm giá trị lớn nhất và nhỏ nhất của \(A=\left(\sqrt{\pi}\right)^{\cos x};x\in R\)
Bài tập 1: Tìm tập xác định của các hàm số sau:
a, y = (1 - x)- \(\frac{1}{3}\) b, y = (2 - x2)\(\frac{3}{5}\)
c, y = (x2 - 1)-2 d, y = (x2 - x - 2)\(\sqrt{2}\)