Không thích khai triển hằng đẳng thức bậc 5 thì có thể làm thế này, dễ hiểu dễ biến đổi:
\(sin^6x+cos^6x=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)=1-\dfrac{3}{4}sin^22x\)
\(=1-\dfrac{3}{4}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)=\dfrac{5}{8}+\dfrac{3}{8}cos4x\)
\(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=1-\dfrac{1}{2}sin^22x\)
\(=1-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)=\dfrac{3}{4}+\dfrac{1}{4}cos4x\)
\(sin^{10}x+cos^{10}x=\left(sin^6x+cos^6x\right)\left(sin^4x+cos^4x\right)-sin^4x.cos^4x\left(sin^2x+cos^2x\right)\)
\(=\left(\dfrac{5}{8}+\dfrac{3}{8}cos4x\right)\left(\dfrac{3}{4}+\dfrac{1}{4}cos4x\right)-\dfrac{1}{16}sin^42x\)
\(=\dfrac{15}{32}+\dfrac{3}{8}cos4x+\dfrac{3}{32}cos^24x-\dfrac{1}{16}\left(\dfrac{1}{2}-\dfrac{1}{2}cos4x\right)^2\)
\(=\dfrac{15}{32}+\dfrac{3}{8}cos4x+\dfrac{3}{32}\left(\dfrac{1}{2}+\dfrac{1}{2}cos8x\right)-\dfrac{1}{64}\left(1-2cos4x+cos^24x\right)\)
\(=\dfrac{15}{32}+\dfrac{3}{8}cos4x+\dfrac{3}{64}+\dfrac{3}{64}cos8x-\dfrac{1}{64}+\dfrac{1}{32}cos4x-\dfrac{1}{64}\left(\dfrac{1}{2}+\dfrac{1}{2}cos8x\right)\)
\(=\dfrac{63}{128}+\dfrac{13}{32}cos4x+\dfrac{5}{128}cos8x\)