\(D=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\)
\(2D=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\right)\)
\(2D=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{999}}\)
\(2D-D=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{999}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\right)\)\(D=1-\dfrac{1}{2^{1000}}\)
\(D=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}.\)
\(2D=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\right).\)
\(2D=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{999}}.\)
\(2D-D=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{999}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{1000}}\right).\)
\(D=1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{2^2}-\dfrac{1}{2^2}\right)+...+\left(\dfrac{1}{2^{999}}-\dfrac{1}{2^{999}}\right)-\dfrac{1}{2^{1000}.}\)
\(D=1+0+0+...+0-\dfrac{1}{2^{1000}}.\)
\(D=1-\dfrac{1}{2^{1000}}.\)
Vậy.....
2D=\(\dfrac{1}{2^0}+\dfrac{1}{2^1}+.....+\dfrac{1}{2^{999}}\)
2D-D=\(1-\dfrac{1}{2^{999}}\)
D=\(1-\dfrac{1}{2^{99}}\)