Giải:
a) \(\dfrac{3}{5}x-\dfrac{2}{3}=\dfrac{-1}{2}\)
\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{-1}{2}+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{1}{6}\)
\(\Leftrightarrow x=\dfrac{1}{6}:\dfrac{3}{5}\)
\(\Leftrightarrow x=\dfrac{5}{18}\)
Vậy \(x=\dfrac{5}{18}\).
b) \(\left(\dfrac{1}{2}-x\right).\dfrac{2}{3}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{2}-x=\dfrac{1}{8}:\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{2}-x=\dfrac{3}{16}\)
\(\Leftrightarrow x=\dfrac{1}{2}-\dfrac{3}{16}\)
\(\Leftrightarrow x=\dfrac{5}{16}\)
Vậy \(x=\dfrac{5}{16}\).
c) \(\left|2x-\dfrac{3}{7}\right|-\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Leftrightarrow\left|2x-\dfrac{3}{7}\right|=\dfrac{3}{4}+\dfrac{1}{2}\)
\(\Leftrightarrow\left|2x-\dfrac{3}{7}\right|=\dfrac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{3}{7}=\dfrac{5}{4}\\2x-\dfrac{3}{7}=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{47}{28}\\2x=-\dfrac{23}{28}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{47}{56}\\x=-\dfrac{23}{56}\end{matrix}\right.\)
Vậy \(x=\dfrac{47}{56}\) hoặc \(x=-\dfrac{23}{56}\).
d) \(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)
\(\Leftrightarrow2\left(2x+1\right)=3\left(x-5\right)\)
\(\Leftrightarrow4x+2=3x-15\)
\(\Leftrightarrow4x-3x=-15-2\)
\(\Leftrightarrow x=-17\)
Vậy \(x=-17\).
Chúc bạn học tốt!!!
a. \(\dfrac{3}{5}x-\dfrac{2}{3}=-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{5}{18}\)
b) \(\left(\dfrac{1}{2}-x\right).\dfrac{2}{3}=\dfrac{1}{8}\)
\(\Rightarrow x=\dfrac{5}{16}\)
c) \(\left|2x-\dfrac{3}{7}\right|-\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow\left|2x-\dfrac{3}{7}\right|=\dfrac{5}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{7}=\dfrac{5}{4}\\2x-\dfrac{3}{7}=-\dfrac{5}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{47}{56}\\x=\dfrac{-23}{56}\end{matrix}\right.\)
d) \(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)
\(\Rightarrow4x+2=3x-15\)
\(\Rightarrow x=-17\).