cos6x . cos2x + \(\dfrac{1}{2}\) = 0
⇔ 2cos6x . cos2x + 1 = 0
⇔ cos8x + cos4x + 1 = 0
⇔ 2cos24x + cos4x = 0
⇔ \(\left[{}\begin{matrix}cos4x=0\\cos4x=-\dfrac{1}{2}\end{matrix}\right.\)
cos6x . cos2x + \(\dfrac{1}{2}\) = 0
⇔ 2cos6x . cos2x + 1 = 0
⇔ cos8x + cos4x + 1 = 0
⇔ 2cos24x + cos4x = 0
⇔ \(\left[{}\begin{matrix}cos4x=0\\cos4x=-\dfrac{1}{2}\end{matrix}\right.\)
cos2x/sin3x + cos6x/sin9x + cos18x/sin27x =0
Giải phương trình: cos2x + cos6x + cos10x=0
a, cos3x + cos2x - cosx - 1 = 0
b, cos(8sinx) = 1
c, 1 + cos2x + cosx = 0
d, 3cosx + |sinx| = 2
1+sinx-cos2x=0
Sin3x+cos2x-sinx=0
HELPING NOW!!!
Giair phương trình lượng giác sau:
1) cosx - cos2x +cos3x = 0
2) cos2x - sin2x = sin3x + cos4x
3) cos2x + 2sinx - 1 - 2sinxsosx = 0
4) 1+ sinx - cosx = sin2x - cos2x
5) \(\sqrt{2}\) sin (2x+\(\dfrac{\pi}{4}\)) - sinx - 3cosx +2 =0
6) sin2x + 2cos2x = 1+sinx - 4cosx
giải phương trình 1) \(\dfrac{cos2x}{1-sin2x}=0\)
2) tan3x=tan4x
3) cot2x.sin3x=0
Giải các phương trình sau:
1) \(2\cos4x-3=0\)
2) \(cos5x+2=0\)
3) \(cos2x+0,7=0\)
4) \(cos^22x-\dfrac{1}{4}=0\)
Giải các phương trình sau:
1. tan2x+3= (1+√2 sin x)(tan x+ √2 cos x)
2. (1- cos x. cos2x )/ sin2x - 1/ cos x= 4 sin2x - sin x-1
3. sin3x + 2 cos3x+ cos2x - 2sin2x - 2sinx-1=0
Giải các phương trình sau:
a, \(\sqrt{2}\) sin \(\left(2x+\frac{\pi}{4}\right)\)=3sinx+cosx+2
b, 1+sinx+cosx+sin2x+cos2x=0
c, (2cosx-1)(2sinx+cosx)=sin2x-sinx
d, cos3x+cos2x-cosx-1=0