Tìm CTTQ của dãy số \(\left\{{}\begin{matrix}u_1=1\\u_n=\frac{n}{n-1}u_{n-1}+n\end{matrix}\right.\). Chứng minh \(u_1+u_2+...+u_n< 2016^3\)
cho dãy số(un) được xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\sqrt{\dfrac{n+1}{n}}\left(u_n+3\right)-3\end{matrix}\right.\) ,n=1,2,...Tìm công thức tổng quát của dãy số (un) và tính \(\lim\limits\dfrac{u_n}{\sqrt{n}}\) .
1)Viết phương trình tiếp tuyến của đường cong (C):y=f(x)=x^3-2x biết: a)tiếp tuyến vuông góc với trục Ox. b)Tại giao điểm của (C) với các trục tọa độ.
2)Cho hàm số :y=f(x)=x-1/x có đồ thị là đường cong (C):
a) Viết pt tt với (C),biết tt song song với dt y=2x và tiếp điểm có hoành độ âm.
b)CMR trên (C) không thể tồn tại 2 điểm M,N để tiếp tuyến tại 2 điểm này vuông góc với nhau.
c)CMR mọi tiếp tuyến của (C) đều không thể đi qua gốc tọa độ O.
3)Tìm tất cả các điểm trên đồ thị (C):y=f(x)=(2x+3)/(x+2) sao cho tại điểm đó tt của (C) cắt các đường thằng (d1):x=-2 và (d2):y=2 lần lượt tại A và B sao cho AB gần nhất.
4)Cho hàm số y=f(x)=sin2x+1 (x>=0) và =2x+1 (x<0) .Tính đạo hàm của hàm số tại Xo=0 bằng định nghĩa.
Cho dãy số (Un) được xác định bởi \(u_n=\dfrac{n^2+3n+7}{n+1}\). Dãy số có bao nhiêu số hạng nhận giá trị nguyên
Cho dãy số (Un) có \(U_n=4^n+3\), có bao nhiêu số hạng của dãy nhỏ hơn 10000 và có tận cùng bằng 9
Cho dãy số (Un) có Un=5n+2. Có bao nhiêu số hạng của dãy thỏa mãn 960<Un<6900 đồng thời có chữ số tận cùng bằng 2
Cho dãy số (Un) có Un=5n+2, trong các số hạng \(u_{10},u_{11},...,u_{2023}\) của dãy, có bao nhiêu số hạng có tận cùng bằng 7
Cho dãy số (Un) được xác định như sau: Un là số dư của số tự nhiên n trong phép chia cho 6
a) Tính 7 số hạng đầu tiên của dãy số
b) Chứng minh rằng: Nếu \(U_m=U_n\) thì \(\left|m-n\right|\) chia hết cho 6
Cho dãy số thực \(\left(u_n\right)\) xác định bởi \(\left\{{}\begin{matrix}u_1=16,u_2=288\\u_{n+2}=18u_{n+1}-17u_n\forall n\ge1\end{matrix}\right.\)
Tìm số n nhỏ nhất sao cho \(u_n\)chia hết cho 22020.