Để \(u_n\) nguyên thì \(n^2+3n+7⋮n+1\)
=>\(n^2+n+2n+2+5⋮n+1\)
=>\(5⋮n+1\)
=>\(n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-2;4;-6\right\}\)
Vậy: \(u_n\) có 4 số hạng nhận giá trị nguyên
Để \(u_n\) nguyên thì \(n^2+3n+7⋮n+1\)
=>\(n^2+n+2n+2+5⋮n+1\)
=>\(5⋮n+1\)
=>\(n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-2;4;-6\right\}\)
Vậy: \(u_n\) có 4 số hạng nhận giá trị nguyên
Cho dãy số (Un) được xác định bởi: \(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\u_{n+1}=\dfrac{u_n}{3.\left(3n+1\right)u_n+1}\end{matrix}\right.\),\(n\in N\)*. Tính tổng 2020 số hạng đầu tiên của dãy số đó
Cho dãy số (un) xác định bởi : u1=1 ,\(u_{n+1}=\dfrac{3}{2}\left(u_n-\dfrac{n+4}{n^2+3n+2}\right)\)
Tìm công thức số hạng tổng quát un theo n
Cho dãy số (Un) xác định bởi \(U_n=\dfrac{an^2-1}{n^2+3}\) với \(n\ge1\). Tập hợp các giá trị của a để dãy số (Un) tăng là?
(Giải thích chi tiết dùm mình nha!!!)
Cho dãy số (Un) xác định bởi: \(U_n=n^2-10n+10\). Có bao nhiêu số hạng của dãy cùng bằng 1?
A.1
B.2
C.3
D.4
(Giải thích chi tiết dùm mình nha!!!)
Cho dãy số (Un) xác định bởi: \(u_n=n^2-10n+10\). Có bao nhiêu số hạng của dãy cùng bằng 1?
A.1
B.2
C.3
D.4
Cho dãy số (Un) xác định bởi công thức truy hồi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{n+2}{4.\left(n+1\right)}u_n\end{matrix}\right.\), \(n\in\)N*. Công thức số hạng tổng quát của dãy số (Un) là?
Cho dãy số (Un) xác định bởi:\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=-\dfrac{3}{2}u_n^2+\dfrac{5}{2}u_n+1\end{matrix}\right.\), \(\forall n\ge1\)
1) Hãy tính u2.u3,u4,u5
2) Dự đoán công thức của số hạng tổng quát Un
cho dãy số được xác định bởi công thức Un = \(\dfrac{2^n-5^n}{2^n+5^n}\)
Tính tổng của dãy (SN)= \(\dfrac{1}{u_1-1}+\dfrac{1}{u_2-1}+\dfrac{1}{u_3-1}+....+\dfrac{1}{u_N-1}\)
Đáp án là \(\dfrac{-\left(2+3N\right).5^N+2^{N+1}}{6.5^N}\)
cho dãy số(un) được xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\sqrt{\dfrac{n+1}{n}}\left(u_n+3\right)-3\end{matrix}\right.\) ,n=1,2,...Tìm công thức tổng quát của dãy số (un) và tính \(\lim\limits\dfrac{u_n}{\sqrt{n}}\) .