cho hàm số y=f(x) liên tục trên R đồng thời thỏa mãn điều kiện f(0)<0 và [f(x)-4x]f(x)=(9x^4)+(2x^2)+1 với mọi x thuộc R. Hàm số g(x)=f(x)+4x+2020 nghịch biến trên khoảng nào ?
Cho hàm số y=f(x) có đạo hàm \(f'\left(x\right)=x\left(x+1\right)^2\left(x^2+2mx+1\right)\) với mọi x thuộc R. Có bao nhiêu số nguyên âm m để hàm số \(g\left(x\right)=f\left(2x+1\right)\) đồng biến trên khoảng (3;5)
Cho hàm số y=f(x) xác định trên R và có bảng xét dấu đạo hàm như sau:
x | -∞ -1 1 4 +∞ |
f'(x) | - 0 + 0 - 0 + |
Biết f(x)>2 ∀xϵR Xét hàm số \(g\left(x\right)=f\left(3-2f\left(x\right)\right)-x^3+3x^2-2020\) đồng biến, nghịch biến trên các khoảng nào?
cho hàm số y=f(x) có f'(x)=-3(x+4)(x^2-4)(x+1)^2-2x+12 hỏi hàm số f(x) nghịch biến trong khoảng nào sau đây? A. (−∞; -1) B. (0; 2) C. (2; +∞) D. (-1; 0)
Cho hàm số y = f(x) có đạo hàm f'(x) = x(x-1)2(x2+mx+9) với mọi x ∈ R. Có bao nhiêu số nguyên dương m để hàm số g(x) = f(3-x) đồng biến trên khoảng (3;+∞) ?
A.5
B.6
C.7
D.8
Cho hàm số \(y=f\left(x\right)\) liên tục trên R, có đạo hàm \(f'\left(x\right)=x\left(x-1\right)^2\left(x-2\right)\) . Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho hàm số \(y=f\left(\dfrac{x+2}{x+m}\right)\) đồng biến trên khoảng \(\left(10;+\infty\right)\) . Tính tổng các phần tử của S.
Cho hàm số \(y=\sqrt{\left(2m-1\right)\sin x-\left(m+2\right)\cos x+4m-3}\). Có tất cả bao nhiêu giá trị nguyên dương nhỏ hơn 2019 của tham số m để hàm số trên xác định với mọi x∈ R.
Tìm khoảng đơn điệu của hàm số:
1, \(y=x^2-2\left|x\right|-3\)
2, \(y=sin\left(2x\right)-cos\left(2x\right)+3x\)
Mọi người giúp mình với ạ!! Mình cảm ơn nhiều!!!
Cho y=\(\frac{1}{3}mx^3-\left(m-1\right)x^2-3\left(m-2\right)x+\frac{1}{3}\)
a. Tìm m để hàm số đồng biến trên R
b. Tìm m để hàm số nghịch biến trên R
c. Tìm m để hàm số có 2 cực trị
d. Tìm m để hàm số có 2 cực trị x1,x2 sao cho x1+3x2=1
e. Tìm m để hàm số nghịch biến trên đoạn có độ dài bằng 1 (khi m>0)