có bao nhiêu số phức thỏa mãn |z|(z-6-i) +2i =(7-i)z ?
A.2 B.3 C.1 D.4
có bao nhiêu số phức thỏa mãn |z|(z-6-i) +2i =(7-i)z ?
A.2 B.3 C.1 D.4
Cho số phức Z thoả mãn (1+2i)z-5= 3i tìm số phức liên hợp z 2/ cho số phức z=a+bi(a, b thuộc R) thoả mãn 3z-5z ngan -6+10i=0 .tính a-b
Có bao nhiêu số phức z thoả mãn |iz-i+1|=2 và |z-1|=|z+2i|
cho số phức z= a+bi ( a, b thuộc R ) thỏa mãn z+1+2i - (1+i) \(\left|z\right|\)=0 và \(\left|z\right|>1\) tính giá trị P = a+b
cho số phức z = a + bi( a,b thuộc R) thoả mãn |z+1+i|=|z+2i| và P=|z-2-3i|+|z+1| đạt giá trị nhỏ nhất. Tính P=a+2b
trên tập hợp số phức, xét phương trình \(z^2\)-2(2m-1)z+\(m^2\)=0. Có bao nhiêu giá trị của m để phương trình có hai nghiệm phân biệt z1,z2 thỏa mãn \(z1^2\)+\(z2^2\)=2
Cho 2 số phức z và w thỏa |z-5+3i|=3 và |iw +4+2i|=2 . tìm min của P=|3iz + 2w|
Cho số phức z thoả mãn điều kiện |z4 +4 | = | z(z+2i) |. Tính giá trị nhỏ nhất của |z+i|
Xét các số phức z thỏa mãn |z - 4 -3i| = \(\sqrt{5}\). Tiính P= a+ b khi | z +1 -3i| + | z-1+i| đạt giá trị lớn nhất
có bao nhiêu số phức z thỏa mãn z^2 là phần thực và |z-2-i|=2 ?