Đề hình như hơi sai sai ở chỗ \(-7.3^m\) cuối cùng
Đúng như vầy thì chắc ko làm được đâu, \(-7.3m\) mới có cơ hội biến đổi
Xét \(I_1=\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)dx\)
Đặt \(x=\pi-t\Rightarrow dx=-dt\) ; \(sinx=sin\left(\pi-t\right)=sint\)
\(\left\{{}\begin{matrix}x=0\Rightarrow t=\pi\\x=\dfrac{\pi}{2}\Rightarrow t=\dfrac{\pi}{2}\end{matrix}\right.\)
\(\Rightarrow I_1=\int\limits^{\dfrac{\pi}{2}}_{\pi}f\left(sint\right).\left(-dt\right)=\int\limits^{\pi}_{\dfrac{\pi}{2}}f\left(sint\right)dt=\int\limits^{\pi}_{\dfrac{\pi}{2}}f\left(sinx\right)dx\)
\(\Rightarrow4042=2I_1=\int\limits^{\dfrac{\pi}{2}}_0f\left(sinx\right)dx+\int\limits^{\pi}_{\dfrac{\pi}{2}}f\left(sinx\right)dx=\int\limits^{\pi}_0f\left(sinx\right)dx\)
Xét \(I_2=\int\limits^{\pi}_0x.f\left(sinx\right)dx\)
Đặt \(x=\pi-t\Rightarrow dx=-dt;sinx=sint\) ; \(\left\{{}\begin{matrix}x=0\Rightarrow t=\pi\\x=\pi\Rightarrow t=0\end{matrix}\right.\)
\(I_2=\int\limits^0_{\pi}\left(\pi-t\right)f\left(sint\right)\left(-dt\right)=\int\limits^{\pi}_0\left(\pi-t\right)f\left(sint\right)dt=\int\limits^{\pi}_0\left(\pi-x\right)f\left(sinx\right)dx\)
\(=\pi\int\limits^{\pi}_0f\left(sinx\right)dx-\int\limits^{\pi}_0x.f\left(sinx\right)dx=4042\pi-I_2\)
\(\Rightarrow2I_2=4042\pi\Rightarrow I_2=2021\pi\)