\(3xy+x-y=1\)
\(\Leftrightarrow3xy+x=y+1\)
\(\Leftrightarrow x\left(3y+1\right)=y+1\)
\(\Rightarrow y+1⋮3y+1\)
\(\Rightarrow3y+3⋮3y+1\)
\(\Rightarrow\left(3y+2\right)+2⋮3y+1\)
\(\Rightarrow2⋮3y+1\)
\(\Rightarrow3y+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Với:
\(3y+1=-2\Rightarrow y=-1\Leftrightarrow x=0\)
\(3y+1=-1\Rightarrow y=\frac{-2}{3}\) (loại vì \(y\notin Z\))
\(3y+1=1\Rightarrow y=0\Leftrightarrow x=1\)
\(3y+1=2\Rightarrow y=\frac{1}{3}\) (loại vì \(y\notin Z\))
Vậy có \(2\) cặp số nguyên \(\left(x;y\right)\) là \(\left(0;-1\right),\left(1;0\right)\)