Cho A= (n-1).(n-3).(n-4).(n-6)+9. Chứng minh a luôn là số chính phương với mọi giá trị nguyên của x
CMR:với mọi số nguyên n thì phân số \(\dfrac{2n+1}{2n^2-1}\)là phân số tối giản
Tìm tất cả các số tự nhiên n sao cho các đa giác đều n cạnh, n+1 cạnh, n+2 cạnh, n+3 cạnh đều có số đo mỗi góc là 1 số nguyên độ
Cm phân thức sau tối giản với mọi số tự nhiên n
a. (12n+1)/(30n+2)
b. (n3+2n)/(n4+3n2+1)
c. (2n+1)/(2n2-1)
Với n là số tự nhiên khác 0 . kí hiệu n! là tích của n số tự nhiên liên tiếp từ 1 đến n
Với mọi n >2 hoặc n =2 thì giá trị của A=\(\frac{\left(x+2\right)!}{\left(x-1\right)!}\) bằng giá trị của biểu thức nào dưới đây :
a) CM: với mọi số nguyên n thì số:
A=\(n^3\left(n^2-7\right)^2-36n⋮105\)
b) CM: với mọi số nguyên của x,y thì giá trị của đa thức
P=\(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)là 1 số chính phương
Chứng minh với n thuộc Z thì biểu thức sau có giá trị nguyên: \(A=\dfrac{n}{3}+\dfrac{n^2}{2}+\dfrac{n^3}{6}\)
Bài 1: Cho a, b là 2 số lẻ ko chia hết cho 3.
Cm: a2-b2 chia hết cho 24.
Bài 2: Cm biểu thức sau là số nguyên với mọi n thuộc N:
A=(n5:120)+(n4:12)+(7n3:24)+(5n2:12)+(n:5).
MONG M.N GIÚP ĐỠ, MIK CẢM ƠN NHÌU...
Với n là số tự nhiên khác 0 . kí hiệu n! là tích của n số tự nhiên liên tiếp từ 1 đến n
Với mọi n >2 hoặc n =2 thì giá trị của A= bằng giá trị của biểu thức nào dưới đây :
3! n+2 n! n(n+1)(n+2)